Electrochemical analysis of the interaction between DNA and abiraterone D4A metabolite

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The electroanalytical characteristics of double-stranded DNA (dsDNA) and the complex of dsDNA with the anticancer drug metabolite, abiraterone D4A, in the concentration range of 25–200 μM were investigated using differential pulse voltammetry. The effect of D4A on dsDNA was detected by changes in the intensity of the electrochemical oxidation of the heterocyclic bases guanine, adenine, and thymine. This investigation used screen-printed electrodes modified with carbon nanotubes. Binding constants (Kb) for guanine, adenine, and thymine in the dsDNA/D4A complexes were calculated to be 1.1 × 104, 5.5 × 103, and 2.5 × 103 M–1, respectively. The DNA-mediated electrochemical coefficients of the toxic effect were calculated as the ratio of the signal intensities of guanine and adenine in the presence of D4A compared to those without the drug (T, %). Based on an analysis of electrochemical parameters and binding constant values, an assumption was made regarding the mechanism of the interaction between D4A and DNA, predominantly through electrostatic interactions and the formation of hydrogen bonds with the minor groove. Conclusions about the mechanism of the interaction of the abiraterone D4A metabolite with the dsDNA minor groove, obtained by electrochemical methods, were supported by the molecular simulation of the DNA/D4A complex.

全文:

受限制的访问

作者简介

V. Shumyantseva

Orekhovich Research Institute of Biomedical Chemistry; Russian National Research Medical University

编辑信件的主要联系方式.
Email: viktoria.shumyantseva@ibmc.msk.ru

Faculty of Medicine and Biology

俄罗斯联邦, 119121, Moscow; 117321, Moscow

A. Berezhnova

Orekhovich Research Institute of Biomedical Chemistry

Email: viktoria.shumyantseva@ibmc.msk.ru
俄罗斯联邦, 119121, Moscow

L. Agafonova

Orekhovich Research Institute of Biomedical Chemistry

Email: viktoria.shumyantseva@ibmc.msk.ru
俄罗斯联邦, 119121, Moscow

T. Bulko

Orekhovich Research Institute of Biomedical Chemistry

Email: viktoria.shumyantseva@ibmc.msk.ru
俄罗斯联邦, 119121, Moscow

A. Veselovsky

Orekhovich Research Institute of Biomedical Chemistry; Russian National Research Medical University

Email: viktoria.shumyantseva@ibmc.msk.ru

Faculty of Medicine and Biology

俄罗斯联邦, 119121, Moscow; 117321, Moscow

参考

  1. Hasanzadeh M., Shadjou N. Pharmacogenomic study using bio- and nanobioelectrochemistry: Drug–DNA interaction // Mater. Sci. Eng. C. 2016. V. 61. P. 1002.
  2. Bolat G. Investigation of poly(CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with anticancer drug Irinotecan // Microchem. J. 2020 V. 159. Article 105426.
  3. Hua Y., Jiaming M., Dachao L., Ridong W. DNA-based biosensors for the biochemical analysis: A review // Biosensors. 2022. V. 12. P. 183.
  4. Manna S., Sharma, A., Satpati A.K. Electrochemical methods in understanding the redox processes of drugs and biomolecules and their sensing // Curr. Opin. Electrochem. 2022. V. 32. Article 100886.
  5. Eckel R., Ros R., Ros A., Wilking S.D., Sewald N., Anselmetti D. Identification of binding mechanisms in single molecule–DNA complexes // Biophys. J. 2003 V. 85. P. 1968.
  6. Das S., Kumar G.S. Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid: Model for intercalative drug–DNA binding // J. Mol. Struct. 2008. V. 63. P. 87256.
  7. Pronina V.V., Kostryukova L.V., Bulko T.V., Shumyantseva V.V. Interaction of Doxorubicin embedded into phospholipid nanoparticles and targeted peptide-modified phospholipid nanoparticles with DNA // Molecules. 2023. V. 28. P. 5317.
  8. Gunaydin-Akyildiz A., Aksoy N., Boran T., Ilhan E.N., Ozhan G. Favipiravir induces oxidative stress and genotoxicity in cardiac and skin cells // Toxicol. Lett. 2022. V. 371. P. 9.
  9. Ramotowska S., Ciesielska A., Makowski M., What can electrochemical methods offer in determining DNA–drug interactions? // Molecules. 2021. V. 26. P. 3478.
  10. Morawska K., Popławski T., Ciesielski W., Smarzewska S. Electrochemical and spectroscopic studies of the interaction of antiviral drug Tenofovir with single and double stranded DNA // Bioelectrochemistry. 2018. V. 123. P. 227.
  11. Chiorcea-Paquim A.M., Oliveira-Brett A.M. Electrochemistry of chemotherapeutic alkylating agents and their interaction with DNA // J. Pharm. Biomed. Anal. 2023. V. 222. Article 115036.
  12. Eckert K.A., Kunkel T.A. DNA polymerase fidelity and the polymerase chain reaction // PCR Methods Appl. 1991. V. 17. P. 24.
  13. Шумянцева В.В., Агафонова Л.Е., Булко Т.В., Кузиков А.В., Мамамрех.А., Ян Д., Пергушов Д.В., Сиголаева Л.В. Электроанализ биомолекул: обоснованный выбор сенсорных конструкций // Успехи биологической химии. 2021. Т. 61. С. 295. (Shumyantseva V.V., Agafonova L.E., Bulko T.V., Kuzikov A.V., Masamrekh R.A., Yuan J., Pergushov D.V., Sigolaeva L.V. Electroanalysis of biomolecules: Rational selection of sensor construction // Biochemistry (Moscow) B: Biol. Chem. Rev. 2021. V. 86. P. 140.)
  14. Paleček E., Bartošík M. Electrochemistry of nucleic acids // Chem. Rev. 2012. V. 112. P. 3427.
  15. Ferapontova E.E. DNA electrochemistry and electrochemical sensors for nucleic acids // Ann. Rev. Anal. Chem. 2018. V. 11. P. 197.
  16. Evtugyn G.A., Porfireva A.V., Belyakova S.V. Electrochemical DNA sensors for drug determination // J. Pharm. Biomed. Anal. 2022. V. 221. Article 115058.
  17. Teles F.R.R., Fonseca L.P. Trends in DNA biosensors // Talanta. 2008. V. 77. P. 606.
  18. Trotter M., Borst N., Thewes R., Stetten F. Review: Electrochemical DNA sensing – Principles, commercial systems, and applications // Biosens. Bioelectron. 2020. V. 154. Article 112069.
  19. Blair E.O., Corrigan D.K. A review of microfabricated electrochemical biosensors for DNA detection // Biosens. Bioelectron. 2019. V. 134. P. 57.
  20. Rehman S.U., Sarwar T., Husain M.A., Ishqi H.M., Tabish M. Studying non-covalent drug–DNA interactions // Arch. Biochem. Biophys. 2015. V. 576. P. 49.
  21. Пронина В.В., Агафонова Л.Е., Масамрех Р.А., Кузиков А.В., Шумянцева В.В. Взаимодействие противоопухолевого препарата ацетата абиратерона с дцДНК // Biomed. Chem.: Res. Methods. 2022. Т. 5. e00174. (Pronina V., Agafonova L., Masamrekh R., Kuzikov A., Shumyantseva V. Interaction of the anticancer drug abiraterone with dsDNA // Biomed. Chem.: Res. Methods. 2022. V. 5. № 2. Article e00174.)
  22. Wani T.A., Alsaif N., Bakheit A.H., Zargar S., Al-Mehizia A.A., Khan A.A. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies // Bioorg Chem. 2020. V. 100. Article 103957.
  23. Petrunak E.M., Bart A.G., Peng H.M., Auchus R.J., Scott E. E.. Human cytochrome P450 17A1 structures with metabolites of prostate cancer drug abiraterone reveal substrate-binding plasticity and a second binding site // J. Biol. Chem. 2023. V. 299. Article 102999.
  24. Li Z., Bishop A.C., Alyamani M., Garcia J.A., Dreicer R., Bunch D. et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer // Nature. 2015. V. 523. P. 347.
  25. Li Z., Alyamani M., Li J., Rogacki K., Abazeed M., Upadhyay S.K. et al. Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy // Nature. 2016. V. 533. P. 547.
  26. Masamrekh R.A., Filippova T.A., Haurychenka Y.I., Sherbakov K.A., Veselovsky A.V., Shumyantseva V.V., Kuzikov A.V. The interactions of a number of steroid-metabolizing cytochromes P450 with abiraterone D4A metabolite: spectral analysis and molecular docking // Steroids. 2020. V.162. Article 108693.
  27. Kuzikov A., Masamrekh R., Filippova T., Haurychenka Y., Shcherbakov K., Veselovsky A., Strushkevich N. et al. Estimation of inhibiting impact of abiraterone D4A metabolite on human steroid 21-monooxygenase (CYP21A2) // Steroids. 2020. V. 154. Article 108528.
  28. Масамрех Р.А., Кузиков А.В., Филиппова Т.А., Щербаков К.А., Веселовский А.В., Шумянцева В.В. Взаимодействие абиратерона и его фармакологически активного метаболита D4A с цитохромом Р450 2С9 (CYP2C9) // Биомедицинская химия. 2022. Т. 68. № 3. С. 201. (Masamrekh R.A., Kuzikov A.V., Filippova T.A., Sherbakov K.A., Veselovsky A.V., Shumyantseva V.V. Interaction of abiraterone and its pharmacologically active metabolite D4A with cytochrome P450 2C9 (CYP2C9) // Biochemistry (Moscow). Supplement Series B: Biomed. Chem. 2022. V. 16. P. 328.)
  29. Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading // J. Comput. Chem. 2010. V. 31. P. 455.
  30. Carrara S., Baj-Rossi C., Boero C., De Micheli G. Do carbon nanotubes contribute to electrochemical biosensing? // Electrochim. Acta. 2014. V. 128. P. 102.
  31. Alim S., Vejayan J., Yusoff M.M., Kafi A.K.M. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review // Biosens. Bioelectron. 2018. V. 121. P. 125.
  32. Shumyantseva V.V., Bulko T.V., Tikhonova E.G., Sanzhakov M.A., Kuzikov A.V., Masamrekh R.A. et al. Electrochemical studies of the interaction of rifampicin and nanosome/rifampicin with dsDNA // Bioelectrochemistry. 2021. V. 140. Article 107736.
  33. Kostryukova L.V., Tereshkina Y.A., Tikhonova E.G., Khudoklinova Y.Y., Bobrova D.V., Gisina A.M., Morozevich G.E., Pronina V.V., Bulko T.V., Shumyantseva V.V. Effect of an NGR peptide on the efficacy of the Doxorubicin phospholipid delivery system // Nanomaterials. 2023. V. 13. P. 2229.
  34. Shumyantseva V.V., Bulko T.V., Agafonova L.E., Pronina V.V., Kostryukova L.V. Comparative analysis of the interaction between the antiviral drug Umifenovir and Umifenovir encapsulated in phospholipids micelles Nanosome/Umifenovir) with dsDNA as a model for pharmacogenomic analysis by electrochemical methods // Processes. 2023. V. 11. P. 922.
  35. Agafonova L., Tikhonova E., Sanzhakov M., Kostryukova L., Shumyantseva V. Electrochemical Studies of the interaction of phospholipid nanoparticles with dsDNA // Processes. 2022. V. 10. P. 2324.
  36. Carrara S., Cavallini A., Erokhin V., Micheli G.D. Multi-panel drugs detection in human serum for personalized therapy // Biosens. Bioelectron. 2011. V. 26. P. 3914.
  37. Pezaro C.J., Mukherji D., De Bono J.S. Abiraterone acetate: Redefining hormone treatment for advanced prostate cancer // Drug Discov. Today. 2012. V. 17. P. 221.
  38. Aliakbarinodehi N., Micheli G.D., Carrara S. Enzymatic and nonenzymatic electrochemical interaction of Abiraterone (antiprostate cancer drug) with multiwalled carbon nanotube bioelectrodes // Anal. Chem. 2016. V. 88. P. 9347.
  39. Bagni G, Osella D, Sturchio E, Macsini M. Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies // Anal. Chim. Acta. 2006. V. 573. P. 81.
  40. Meunier-Presta R., Bouyona A., Rampazzia E., Raveaua S., Andreolettib P., Cherkaoui-Malki M. Electrochemical probe for the monitoring of DNA–protein interactions // Biosens. Bioelectron. 2010. V. 25. P. 2598.
  41. Lima D., Hacke A.C.M., Inaba J., Pessôa C.A., Kerman K. Electrochemical detection of specific interactions between apolipoprotein E isoforms and DNA sequences related to Alzheimer’s disease // Bioelectrochemistry. 2020. V. 133. Article 107447.
  42. Zhao M., Ma J., Li M., Zhang Y., Jiang B., Zhao X. et al. Cytochrome P450 enzymes and drug metabolism in humans // Int. J. Mol. Sci. 2021. V. 22. P. 12808.
  43. Findik M., Bingol H., Erdem A. Hybrid nanoflowers modified pencil graphite electrodes developed for electrochemical monitoring of interaction between Mitomycin C and DNA // Talanta. 2021. V. 222. Article 121647.
  44. Muti M., Muti M. Electrochemical monitoring of the interaction between anticancer drug and DNA in the presence of antioxidant // Talanta. 2018. V. 178. P. 1033.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Oxidation of abiraterone by 3b-hydroxysteroid dehydrogenase (3b-HSD) to form a 3-keto-Δ4-derivative of abiraterone (a metabolite of abiraterone D4A) [20, 23, 24].

下载 (94KB)
3. Fig. 1. Methods of studying DNA/drug complexes.

下载 (301KB)
4. Fig. 2. (a) Differential pulse voltammograms of PGE/CNT/D4A with a metabolite concentration of 100 microns in the potential range 0.2–1.2 V. (b) Cyclic voltammograms of PGE/CNT/D4A in the potential range 0.2–1.2 V.

下载 (129KB)
5. 3. (a) Differential pulse voltammograms of PGE/UN, GE/UND/D4 A and GE/UND/dsDNA (1.5 mg/ml)/D4 A (100 microns) with different incubation time of the complex. The dependence of the intensity of electrooxidation signals during the interaction of the D4A metabolite with DNA on the incubation time for: (b) guanine, (c) adenine, and (d) thymine.

下载 (269KB)
6. Fig. 4. (a) Differential pulse voltammograms of PGE/UN, GE/UND/DNA and PEG/UNT/DNA (1.5 mg/ml) / D4A with different concentrations of the drug. The dependences of the values of dsDNA electrooxidation potentials for (b) guanine and adenine, (c) thymine on concentrations of 0-200 microns of the metabolite abiraterone D4A.

下载 (263KB)
7. 5. The effect of therapeutic concentrations (0-200 microns) of the metabolite abiraterone D4A on the intensity of dsDNA electrooxidation (1.5 mg/ml) of (a) guanine, (b) adenine, and (c) thymine.

下载 (197KB)
8. 6. The dependence of log(1/[D4A]) on log[IDNA/D4A/(IDNA –IDNA/D4A)] for determining the binding constants for (a) guanine, (b) adenine, and (c) thymine.

下载 (195KB)
9. 7. Models of (a) abiraterone and (b) D4A complexes with DNA. The yellow dotted lines show hydrogen bonds.

下载 (237KB)

版权所有 © Russian Academy of Sciences, 2024