Human Health, Environmental Comfort and Well-Being. Part 1. Engineering and Design Resources of the Bioindustry on the Way to Safe Competition with the Resources of Natural Biocenoses and Health-Saving Systems
- Авторлар: Suchkov S.V.1,2,3,4, Abe H.5, Murphy S.6,7, Smith D.8, Polyakova V.S.4, Scherman D.9,10,11, Glinushkin A.P.12, Barach P.13, Terentʼev A.O.12, Tan M.14, Suvorov A.N.15,16
-
Мекемелер:
- Russian Academy of Natural Sciences
- Russian University of Medicine
- New York Academy of Sciences
- University of World Politics and Law
- Abe Cancer Clinic
- Massachusetts General Hospital (MGH)
- Harvard Medical School
- Mayo Clinic
- European Academy of Sciences
- National Center for Scientific Research (CNRS)
- Paris Descartes University
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- Wayne State University, School of Medicine
- NAKADA Geriatric Health and Welfare Facilities
- Institute of Experimental Medicine, Russian Academy of Sciences
- St. Petersburg State University
- Шығарылым: Том 144, № 3 (2024)
- Беттер: 291-313
- Бөлім: Articles
- ##submission.dateSubmitted##: 02.02.2025
- ##submission.datePublished##: 18.12.2024
- URL: https://rjpbr.com/0042-1324/article/view/653199
- DOI: https://doi.org/10.31857/S0042132424030033
- EDN: https://elibrary.ru/PSBEEY
- ID: 653199
Дәйексөз келтіру
Толық мәтін
Аннотация
Everyone has the right to the highest attainable standard of health, and modern preventive, preventive and rehabilitative manipulations promote health and well-being. Thanks to a number of fundamental projects on the study of human health at various levels (genomic, proteomic, and metabolomic), and molecular mechanisms of the development of pathological conditions, there has been a great leap in the field of applied sectors of industrial biotechnology, including segments of the pharmaceutical and food industries, significantly replenished health-saving resources and improved the quality of life of the population. This article will review the advanced achievements of fundamental and applied research, as well as promising areas of the bioindustry.
Авторлар туралы
S. Suchkov
Russian Academy of Natural Sciences; Russian University of Medicine; New York Academy of Sciences; University of World Politics and Law
Хат алмасуға жауапты Автор.
Email: med_nika2000@mail.ru
Department of Clinical Allergology and Immunology
Ресей, Moscow; Moscow; New York, USA; MoscowH. Abe
Abe Cancer Clinic
Email: med_nika2000@mail.ru
Жапония, Tokyo
S. Murphy
Massachusetts General Hospital (MGH); Harvard Medical School
Email: med_nika2000@mail.ru
АҚШ, Boston, MA; Boston, MA
D. Smith
Mayo Clinic
Email: med_nika2000@mail.ru
АҚШ, Rochester, MN
V. Polyakova
University of World Politics and Law
Email: med_nika2000@mail.ru
Ресей, Moscow
D. Scherman
European Academy of Sciences; National Center for Scientific Research (CNRS); Paris Descartes University
Email: med_nika2000@mail.ru
Unité de Pharmacologie Chimique et Génétique d’Imagerie
Бельгия, Liège; Paris, France; Paris, FranceA. Glinushkin
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: med_nika2000@mail.ru
Ресей, Moscow
P. Barach
Wayne State University, School of Medicine
Email: mbikeeva@yandex.ru
АҚШ, Detroit, MI
A. Terentʼev
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: mbikeeva@yandex.ru
Ресей, Moscow
M. Tan
NAKADA Geriatric Health and Welfare Facilities
Email: mbikeeva@yandex.ru
Жапония, Nakada Tome Miyagi
A. Suvorov
Institute of Experimental Medicine, Russian Academy of Sciences; St. Petersburg State University
Email: mbikeeva@yandex.ru
Department of Microbiology
Ресей, St. Petersburg; St. PetersburgӘдебиет тізімі
- Основы персонализированной и прецизионной медицины / Ред. С.В. Сучков. М.: ГЭОТАР-Медиа, 2020. 624 с.
- Секачева Е.Г., Большакова О.В., Бондаренко В.В. Применение методов клеточной и генной инженерии в биологии и медицине // Синергия Наук. 2018. № 23. С. 980–992.
- Arslan F.1., Lai R.C., Smeets M.B. et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury // Stem Cell Res. 2013. V. 10 (3). P. 301–312. https://doi.org/10.1016/j.scr.2013.01.002
- Bailey R.M., Rozenberg A., Gray S.J. Comparison of high-dose intracisterna magna and lumbar puncture intrathecal delivery of AAV9 in mice to treat neuropathies // Brain Res. 2020. V. 1739. P. 146832. https://doi.org/10.1016/j.brainres.2020.146832
- Balashova E.E., Trifonova O.P., Maslov D.L. et al. Metabolomnoe profilirovanie v izuchenii protsessov stareniia [Metabolome profiling in the study of aging processes] // Biomed. Khim. 2022. V. 68 (5). P. 321–338. https://doi.org/10.18097/PBMC20226805321
- Bashor C.J., Hilton I.B., Bandukwala H. et al. Engineering the next generation of cell-based therapeutics // Nat. Rev. Drug Discov. 2022. V. 21. P. 655–675.
- Basler G., Fernie A.R., Nikoloski Z. Advances in metabolic flux analysis toward genome-scale profiling of higher organisms // Biosci. Rep. 2018. V. 38 (6). P. BSR20170224. https://doi.org/10.1042/BSR20170224
- Beckonert O., Keun H., Ebbels T. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts // Nat. Protoc. 2007. V. 2. P. 2692–2703.
- Bodrova T.A., Kostyushev D.S., Antonova E.N. et al. Introduction into PPPM as a new paradigm of public health service: an integrative view // EPMA J. 2012. V. 3 (1). P. 16.
- Bollini S., Smart N., Riley P.R. Resident cardiac progenitor cells: at the heart of regeneration // J. Mol. Cell Cardiol. 2011. V. 50 (2). P. 296–303. https://doi.org/10.1016/j.yjmcc.2010.07.006
- Chappell C.R., Perez R., Takara C.O. Growing biodesign ecosystems: community exchange spaces advance biotechnology innovation // Res. Direct. Biotechnol. Design. 2023. V. 1. P. e13. https://doi.org/10.1017/btd.2023.8
- Carrillo-Rodriguez P., Selheim F., Hernandez-Valladares M. Mass spectrometry-based proteomics workflows in cancer research: the relevance of choosing the right steps // Cancers (Basel). 2023. V. 15 (2). P. 555. https://doi.org/10.3390/cancers15020555
- Castelli F.A., Rosati G., Moguet C. et al. Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests // Anal. Bioanal. Chem. 2022. V. 414 (2). P. 759–789. https://doi.org/10.1007/s00216-021-03586-z
- Clarke C.J., Haselden J.N. Metabolic profiling as a tool for understanding mechanisms of toxicity // Toxicol. Pathol. 2008. V. 36 (1). P. 140–147.
- Cui H., Miao S., Esworthy T. et al. 3D bioprinting for cardiovascular regeneration and pharmacology // Adv. Drug. Deliv. Rev. 2018. V. 132. P. 252–269. https://doi.org/10.1016/j.addr.2018.07.014
- Dang D.K., Park B.H. Circulating tumor DNA: current challenges for clinical utility // J. Clin. Invest. 2022. V. 132 (12). P. e154941. https://doi.org/10.1172/JCI154941
- Dietrich E., Antoniades K. Molecularly targeted drugs for the treatment of cancer: oral complications and pathophysiology // Hippokratia. 2012. V. 16 (3). P. 196–199.
- Dromms R.A., Styczynski M.P. Systematic applications of metabolomics in metabolic engineering // Metabolites. 2012. V. 2 (4). P. 1090–1122.
- Ellis J.K., Athersuch T.J., Thomas L.D. et al. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population // BMC Med. 2012. V. 10. P. 61.
- Ellison G.M., Vicinanza C., Smith A.J. et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair // Cell. 2013. V. 154 (4). P. 827–842. https://doi.org/10.1016/j.cell.2013.07.039
- Fodor W.L. Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate // Reprod. Biol. Endocrinol. 2003. V. 1. P. 102.
- Gu W., Hasan S., Rocca-Serra P., Satagopam V.P. Road to effective data curation for translational research // Drug Discov. Today. 2021. V. 26 (3). P. 626–630. https://doi.org/10.1016/j.drudis.2020.12.007
- Hulke M.L., Massey D.J., Koren A. Genomic methods for measuring DNA replication dynamics // Chromosome Res. 2020. V. 28 (1). P. 49–67. https://doi.org/10.1007/s10577-019-09624-y
- Irvine D.J., Maus M.V., Mooney D.J., Wong W.W. The future of engineered immune cell therapies // Science. 2022. V. 378 (6622). P. 853–858. https://doi.org/10.1126/science.abq6990
- Jiang S., Liberti L., Lebo D. Direct-to-consumer genetic testing: a comprehensive review // Ther. Innov. Reg. Sci. 2023. V. 57 (6). P. 1190–1198.
- Kantor A., McClements M.E., MacLaren R.E. CRISPR-Cas9 DNA base-editing and prime-editing // Int. J. Mol. Sci. 2020. V. 21 (17). P. 6240. https://doi.org/10.3390/ijms21176240
- Kapoor S., Rafiq A., Sharma S. Protein engineering and its applications in food industry // Crit. Rev. Food Sci. Nutr. 2017. V. 57 (11). P. 2321–2329. https://doi.org/10.1080/10408398.2014.1000481
- Khanijou J.K., Kulyk H., Bergès C. et al. Metabolomics and modelling approaches for systems metabolic engineering // Metab. Eng. Commun. 2022. V. 15. P. e00209.
- King R.S., Newmark P.A. The cell biology of regeneration // J. Cell Biol. 2012. V. 196 (5). P. 553–562. https://doi.org/10.1083/jcb.201105099
- Liang K., Du Y. Cell engineering techniques improve pharmacology of cellular therapeutics // Biomater. Biosyst. 2021. V. 2. 100016.
- Lizak N., Malpas C.B., Sharmin S. et al. Association of sustained immunotherapy with disability outcomes in patients with active secondary progressive multiple sclerosis // JAMA Neurol. 2020. V. 77 (11). P. 1398.
- Lutz S., Iamurri S.M. Protein engineering: past, present, and future // Meth. Mol. Biol. 2018. V. 1685. P. 1–12. https://doi.org/10.1007/978-1-4939-7366-8_1
- Ma L., Yang H. What’s next toward the bio-design and manufacturing field? // Bio-Des. Manuf. 2023. V. 6. P. 735–741. https://doi.org/10.1007/s42242-023-00260-4
- Mann S.P., Treit P.V., Geyer P.E. et al. Ethical principles, constraints and opportunities in clinical proteomics // Mol. Cell Proteom. 2021. V. 20. P. 100046. https://doi.org/10.1016/j.mcpro.2021.100046
- Medvedeva V., Sorenson E.J., Studneva M. et al. The autoimmune syndrome through the prism of targeted AT-mediated proteolysis: innovative ideas, philosophy, and tools for practitioners of the next step generation // Am. J. Biomed. Sci. Res. 2022a. V. 15 (3). P. 319–327.
- Medvedeva V., Rose N., Miller A. D. et al. The editorials: towards integrated biodesign-related and translational platforms to determine co-development for adaptation of innovative biotechnologies and to prognosticate the future of the healthcare and life science bioindustry // British J. Health. Med. Res. 2022b. V. 9 (4). 271–281.
- Mendell J.R., Al-Zaidy S., Shell R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy // N. Engl. J. Med. 2017 V. 377 (18). P. 1713–1722. https://doi.org/10.1056/NEJMoa1706198. PMID: 29091557
- Mitsuishi M., Cao J., Bártolo P. et al. Biomanufacturing // CIRP Ann. 2013. V. 62 (2). P. 585–606.
- Neely B.A., Dorfer V., Martens L. et al. Toward an integrated machine learning model of a proteomics experiment // J. Prot. Res. 2023. V. 22 (3). P. 681–696. https://doi.org/10.1021/acs.jproteome.2c00711
- Oh B. Direct-to-consumer genetic testing: advantages and pitfalls // Genom. Inform. 2019. V. 17 (3). P. e33. https://doi.org/10.5808/GI.2019.17.3.e33
- Perin E., Borow K., Henry T. et al. Randomized trial of targeted transendocardial mesenchymal precursor cell therapy in patients with heart failure // J. Am. Coll. Cardiol. 2023. V. 81 (9). P. 849–863. https://doi.org/10.1016/j.jacc.2022.11.061
- Santos A., Colaço A.R., Nielsen A.B. et al. A knowledge graph to interpret clinical proteomics data // Nat. Biotechnol. 2022. V. 40 (5). P. 692–702. https://doi.org/10.1038/s41587-021-01145-6
- Saw P.E., Song E.W. Phage display screening of therapeutic peptide for cancer targeting and therapy // Prot. Cell. 2019. V. 10 (11). P. 787–807. https://doi.org/10.1007/s13238-019-0639-7
- Shah S.H., Kraus W.E., Newgard C.B. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function // Circulation. 2012. V. 126 (9). P. 1110–1120.
- Shuel S.L. Targeted cancer therapies: clinical pearls for primary care // Can. Fam. Physician. 2022. V. 68 (7). P. 515–518.
- Simons M., Raposo G. Exosomes – vesicular carriers for intercellular communication // Curr. Opin. Cell Biol. 2009. V. 21 (4). P. 575–581.
- Singh R.K., Lee J.K., Selvaraj C. et al. Protein engineering approaches in the post-genomic era // Curr. Prot. Pept. Sci. 2018. V. 19 (1). P. 5–15. https://doi.org/10.2174/1389203718666161117114243
- Smith R.R., Lucio Barile L., Cho H.C. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens // Circulation. 2007. V. 115 (7). P. 896–908. https://doi.org/10.1161/CIRCULATIONAHA.106.655209
- Sterner R.C., Sterner R.M. CAR-T cell therapy: current limitations and potential strategies // Blood Cancer J. 2021. V. 11 (4). P. 69. https://doi.org/10.1038/s41408-021-00459-7
- Studneva M., Rose N., Gabibov A. et al. A new generation of translational tools designed to monitor multiple sclerosis (MS) at clinical and subclinical stages // Med. Med. Sci. 2021. V. 1 (5). P. 55–63.
- Suchkov S., Murphy S., Smith D., et al. Perspective: personalized and precision medicine (PPM) hold the hi-tech future for healthcare via biodesign to secure the human healthcare and biosafety // World J. Mol. Med. 2024a. V. 1 (1). P. 1–9.
- Suchkov S., Scherman D., Bonifazi D. et al. Personalized and precision medicine (PPM) as a unique healthcare model of the next step generation: the role of a nurses and nursing practice in transdisciplinary care team: the future of nursing services // J. Med. Clin. Nurs. Stud. 2024b. V. 1 (1). P. 1–13.
- Volk M.J., Tran V.G., Tan S.I. et al. Metabolic engineering: methodologies and applications // Chem. Rev. 2023. V. 123 (9). P. 5521–5570. https://doi.org/10.1021/acs.chemrev.2c00403
- Wang S.W., Gao C., Zheng Y.M. et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer // Mol. Cancer. 2022. V. 21 (1). P. 57. https://doi.org/10.1186/s12943-022-01518-8
- Xu Y., Ritchie S.C., Liang Y. et al. An atlas of genetic scores to predict multi-omic traits // Nature. 2023. V. 616 (7955). P. 123–131. https://doi.org/10.1038/s41586-023-05844-9
- Yang S., Zhu Z., Chen S. et al. Metabolic fingerprinting on retinal pigment epithelium thickness for individualized risk stratification of type 2 diabetes mellitus // Nat. Comm. 2023. V. 14 (1). P. 6573. https://doi.org/10.1038/s41467-023-42404-1
- Yang K.K., Wu Z., Arnold F.H. Machine-learning-guided directed evolution for protein engineering // Nat. Methods. 2019. V. 16 (8). P. 687–694. https://doi.org/10.1038/s41592-019-0496-6
- Zhang C., Quan R., Wang J. Development and application of CRISPR/Cas9 technologies in genomic editing // Hum. Mol. Genet. 2018. V. 27 (R2). P. R79–R88. https://doi.org/10.1093/hmg/ddy120
- Zhang P., Wu W., Chen Q., Chen M. Non-coding RNAs and their integrated networks // J. Integr. Bioinform. 2019. V. 16 (3). P. 20190027. https://doi.org/10.1515/jib-2019-0027
- Zhao N., Song Y., Xie X. et al. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development // Signal Transduct. Target Ther. 2023. V. 8 (1). P. 112. https://doi.org/10.1038/s41392-023-01375-x
Қосымша файлдар
