The effectiveness of respiratory support in the early period of intoxication of rabbits with products of thermal degradation of fluoroplast-4

Capa

Citar

Texto integral

Resumo

Inhalation intoxication with acylating pulmonotoxicants (phosgene, perfluoroisobutylene) leads to the formation of toxic pulmonary edema, pharmacological approaches to the treatment of which are ineffective. Respiratory therapy is successfully used to treat non-toxic pulmonary edema. Data on the effectiveness of respiratory support in toxic pulmonary edema are limited. The aim of the study was to experimentally evaluate the effectiveness of protective ventilation with positive end-expiratory pressure in the early period of intoxication by products of thermal degradation of fluoroplast-4. Early initiation of protective ventilation with positive end-expiratory pressure proved to be effective for the correction of toxic pulmonary edema in rabbits in the early period of intoxication by products of thermal degradation of fluoroplast-4 with pulmonotoxic effects. Respiratory support may be an effective approach for the treatment of toxic pulmonary edema caused by intoxication with acylating pulmonotoxicants.

Texto integral

Acesso é fechado

Sobre autores

P. Tolkach

Kirov Military Medical Academy

Autor responsável pela correspondência
Email: pgtolkach@gmail.com
Rússia, St. Petersburg

D. Yaroshenko

Kirov Military Medical Academy

Email: pgtolkach@gmail.com
Rússia, St. Petersburg

A. Khovpachev

Kirov Military Medical Academy

Email: pgtolkach@gmail.com
Rússia, St. Petersburg

D. Sizova

Kirov Military Medical Academy

Email: pgtolkach@gmail.com
Rússia, St. Petersburg

Yu. Ilatovskaya

Veterinary clinic of oncology, traumatology and intensive care of Dr. Sotnikov

Email: pgtolkach@gmail.com
Rússia, St. Petersburg

G. Gracheva

Veterinary clinic of oncology, traumatology and intensive care of Dr. Sotnikov; St. Petersburg State University of veterinary medicine

Email: pgtolkach@gmail.com
Rússia, St. Petersburg; St. Petersburg

V. Basharin

Kirov Military Medical Academy

Email: pgtolkach@gmail.com
Rússia, St. Petersburg

Bibliografia

  1. Башарин В.А., Чепур С.В., Щёголев А.В. и др. Роль и место респираторной поддержки в схемах терапии острого легочного отека, вызванного ингаляционным воздействием токсичных веществ // Воен.-мед. журн. 2019. Т. 340 (11). С. 26–32.
  2. Завирский А.В., Зацепин В.В., Башарин В.А. и др. Экспериментальная модель комбинированного радиационно-химического поражения в результате воздействия рентгеновского излучения и монооксида углерода // Medline.ru. 2020. Т. 21. С. 11–22.
  3. Паншин Ю.А., Малкевич С.Г., Дунаевская Ц.С. Фторопласты. Л.: Химия, 1978. 232 с.
  4. Ярошецкий А.И., Грицан А.И., Авдеев С.Н. и др. Диагностика и интенсивная терапия острого респираторного дистресс-синдрома // Анестезиол. реаниматол. 2020. № 2. С. 5–39.
  5. Brown R.F., Jugg B.J., Harban F.M. et al. Pathophysiological responses following phosgene exposure in the anaesthetized pig // J. Appl. Toxicol. 2002. V. 22. P. 263–269.
  6. Grainge C., Rice P. Management of phosgene-induced acute lung injury // Clin. Toxicol. 2010. V. 48. P. 497–508.
  7. Graham S., Fairhall S., Rutter S. et al. Continuous positive airway pressure: an early intervention to prevent phosgene-induced acute lung injury // Toxicol. Lett. 2018. V. 293. P. 120–126.
  8. Jugg B.J. Toxicology and treatment of phosgene induced lung injury // Chem. Warfare Toxicol. 2016. V. 1. P. 117–153.
  9. Li W., Rosenbruch M., Pauluhn J. Effect of PEEP on phosgene-induced lung edema: pilot study on dogs using protective ventilation strategies // Exp. Toxicol. Pathol. 2015. V. 67. P. 109–116.
  10. Meng G., Zhao J., Wang H-M. et al. Cell injuries of the blood-air barrier in acute lung injury caused by perfluoroisobutylene exposure // J. Occup. Health. 2010. V. 52. P. 48–57.
  11. Mistry S., Scott T.E., Jugg B.J. et al. An in silico porcine model of phosgene-induced lung injury predicts clinically relevant benefits from application of continuous positive airway pressure up to 8 h post exposure // Toxicol. Lett. 2024. V. 391. P. 45–54.
  12. Muir B., Cooper D.B., Carrick W.A. et al. Analysis of chemical warfare agents III. Use of bis-nucleophiles in the trace level determination of phosgene and perfluoroisobutylene // J. Chromatogr. A. 2005. V. 1098 (1–2). P. 156–165.
  13. Parkhouse D.A., Brown R.F., Jugg B.J. et al. Protective ventilation strategies in the management of phosgene-induced acute lung injury // Mil. Med. 2007. V. 172. P. 295–300.
  14. Patocka J. Perfluoroisobutene: poisonous choking gas // Mil. Med. Sci. Lett. 2019. V. 88 (3). P. 98–105.
  15. Roy S., Sadowitz B., Andrews P. et al. Early stabilizing alveolar ventilation prevents ARDS: a novel timing-based ventilatory intervention to avert lung injury // J. Trauma Acute Care Surg. 2012. V. 73. P. 391–400.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. (a) — blood hemoglobin saturation; (b) — partial pressure of carbon dioxide in exhaled air (PeCO2) of rabbits, determined during respiratory support, Me.

Baixar (326KB)
3. Fig. 2. Pulmonary coefficient of rabbits 6 hours after exposure against the background of protective mechanical ventilation with PEEP, relative units, Me [Q1; Q2]. Notes: in each group n = 3; * — differences are significant, compared with the control group, p < 0.05; # — differences are significant, compared with the intoxication group, p < 0.05.

Baixar (91KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024