Basal ganglia and apraxia

Cover Page

Cite item

Full Text

Abstract

The paper presents an experimental evidence for participation of dorsal and ventral striatum in modeling of different kinds of apraxia in animals. The role of implicit and explicit learning in acquisition and performing of skilled motor behavior in animals is analyzed. The posibilities for practical using of the developed models of apraxia for screening in animals the effective pharmacolgical drugs as well as for diagnostics and corrections of impaired motor functions are discussed.

Full Text

Restricted Access

About the authors

S. V. Albertin

Pavlov Institute of Physiology, Rusian Academy of Sciences

Author for correspondence.
Email: albertinsv@infran.ru
Russian Federation, St. Petersburg

References

  1. Альбертин С.В. Способ моделирования интенционного тремора в эксперименте на животных (Felis catus) // Патент № RU2493610С2 заяв. 20.09.2011, опубл. 27.04.2013.
  2. Альбертин С.В. Влияние повреждения кортико- и руброспинальных путей на реализацию оперантных пищедобывательных рефлексов // Нейрофизиология. 2014. Т. 46 (4). С. 391–400.
  3. Альбертин С.В. Моделирование интенционного тремора в эксперименте на животных // Рос. физиол. журн. им. И.М. Сеченова. 2015. Т. 101 (8). С. 949–957.
  4. Альбертин С.В. Влияние стимуляции дофаминергической системы мозга на пищевое предпочтение у крыс // Рос. физиол. журн. им. И.М. Сеченова. 2016а. Т. 102 (10). С. 1137–1145.
  5. Альбертин С.В. Влияние режима условно-рефлекторного переобучения крыс на поисковое поведение в радиальном лабиринте // Рос. физиол. журн. им. И.М. Сеченова. 2016б. Т. 102 (11). С. 1302–1311.
  6. Альбертин С.В. Влияние фрагментации зрительных навигационных сигналов на ориентацию крыс в радиальном лабиринте // Рос. физиол. журн. им. И.М. Сеченова. 2017а. Т. 103 (8). С. 854–865.
  7. Альбертин С.В. Способ тестирования сенсомоторных реакций животных в условиях зрительного слежения // Сенс. сист. 2017б. Т. 31 (4). С. 290–296.
  8. Альбертин С.В. От нейрональной модели целенаправленного поведения к моделированию систем искусственного интеллекта // Успехи физиол. наук. 2019. Т. 50 (2). С. 15–30.
  9. Альбертин С.В. Интегративные функции кортико-стриато-таламо-кортикальной системы мозга // Успехи физиол. наук. 2021. Т. 52 (4). С. 47–52.
  10. Альбертин С.В. Способ реабилитации децеребрированых животных и устройство для его осуществления. Заявка на изобретение № 2022130679 от 24.11.2022.
  11. Альбертин С.В. Метод диагностики и реабилитации децеребрированых животных // Ветеринария Кубани. 2023. Т. 5. С. 19–34.
  12. Альбертин С.В., Винер С.И. Нейрональная активность прилежащего ядра и гиппокампа при формировании поискового поведения в радиальном лабиринте // Бюл. эксп. биол. мед. 2014. Т. 158 (10). С. 400–406.
  13. Альбертин С.В., Головачева И.П. Моделирование различных видов апраксии в эксперименте на животных // Тез. докл. Всерос. науч.-практ. конф. с междунар. участием “Учение академика И.П. Павлова в современной системе нейронаук” (СПб., 18–20 сентября 2024 г.). СПб.: Рос. физиол. общ., 2024. С. 121.
  14. Буреш Я., Бурешова О., Хьюстон Д.П. Методики и основные эксперименты по изучению мозга и поведения / Ред. А.С. Батуев. М.: Высшая школа, 1991. 397 с.
  15. Васильева Ю.В., Варлинская Е.И., Петров Е.С. Особенности восстановления манипуляторного навыка у белых крыс в зависимости от стороны повреждения неокортекса и исходного моторного предпочтения // ЖВНД им. И.П. Павлова. 1995. Т. 45 (6). С. 362–369.
  16. Иоффе М.Е. Механизмы двигательного обучения. М.: Наука, 1991. 201 с.
  17. Козловская И.Б. Афферентный контроль произвольных движений. М.: Наука, 1976. 294 с.
  18. Костюк П.Г. Структура и функция нисходящих систем спинного мозга. Л.: Наука, 1973. 279 с.
  19. Купалов П.С., Воеводина О.Д., Волкова В Д. и др. Ситуационные рефлексы у собак в норме и патологии. Л.: Медицина, 1964. 276 с.
  20. Лурия А.Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга. М.: МГУ, 1963. 432 с.
  21. Лурия А.Р. Основы нейрофизиологии. М.: МГУ, 1973. 374 с.
  22. Селиванова А.Т., Голиков С.Н. Холинергические механизмы высшей нервной деятельности. Л.: Медицина, 1975. 183 с.
  23. Суворов Н.Ф. Стриарная система и поведение. Л.: Наука, 1980. 280 с.
  24. Суворов Н.Ф., Шаповалова К.Б., Альбертин С.В. Участие неостриатума в механизмах инструментального поведения // ЖВНД им. И.П. Павлова. 1983. Т. 33 (2). С. 256–266.
  25. Фанарджян В.В., Геворкян О.В., Маллина Р.К. и др. Динамика изменений инструментальных рефлексов у крыс после перерезки кортикоспинального тракта и удаления сенсомоторной коры мозга // Рос. физиол. журн. им. И.М. Сеченова. 2001. Т. 87 (2). С. 145–154.
  26. Albertin S.V. Patterned single alternation in cats with dorsal caudate lesions is affected by differential reward cueing // Proc. IV Conf. Neurobiol. Learn. Memory (Irvine, CA, Oct. 17–20, 1990). 1990. P. 45.
  27. Albertin S.V. Effects of injury of the cortico- and rubro-spinal pathways on operant food-procuring reflexes // Neurophysiology. 2014. V. 46 (4). P. 352–360.
  28. Albertin S.V., Wiener S.I. Neuronal activity in the nucleus accumbens and hippocampus in rats during formation of seeking behavior in a radial maze // Bull. Exp. Biol. Med. 2015. V. 158 (4). P. 405–409.
  29. Albertin S.V., Mulder A.B., Tabuchi E. et al. Lesions of the medial shell of the n. accumbens impair rats in finding larger rewards but spare reward-seeking behavior // Behav. Brain Res. 2000. V. 117. P. 173–183.
  30. Alexander G.E., DeLong M.R., Strick P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex // Annu. Rev. Neurosci. 1986. V. 9. P. 357–381.
  31. Alexander G.E., Crutcher M.D., DeLong M.R. Basal ganglia-thalamocortical circuits: parallel substrates for motor oculomotor, ‘prefrontal’ and ‘limbic’ functions // Prog. Brain Res. 1990. V. 85. P. 119–146.
  32. Alstermark B., Lundberg A., Norrsel U., Sybirska E. Integration in descending motor pathways controlling the forelimb in the cat // Exp. Brain. Res. 1981. V. 42. P. 299–318.
  33. Alstermark B., Lundberg A., Pettersson L.G. et al. Motor recovery after serial spinal cord lesions of defined descending pathways in cat // Neurosci. Res. 1987. V. 5. P. 68–73.
  34. Andrew C.J. Influence of dystonia on the response to long-term L-dopa therapy in Parkinson’s disease // J. Neurol. Neurosurg. Psychiatry. 1973. V. 36. P. 630–636.
  35. Aosaki T., Tsubjkawa H., Ishida A. et al. Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning // J. Neurosci. 1994. V. 14. P. 3969–3984.
  36. Badgaiyan R.D., Fichman A.G., Alpert N.M. Striatal dopamine release in sequential learning // Neuroimage. 2007. V. 38 (3). P. 549–556.
  37. Bénita M., Condé H., Dormont J.F., Schmied A. Effects of ventrolateral thalamic nucleus cooling on initiation of forelimb ballistic flexion movements by conditioned cats // Exp. Brain Res. 1979. V. 34. P. 435–452.
  38. Buxbaum L.J., Randeraht J. Limb apraxia and the left parietal lobe // Handb. Clin. Neurol. 2018. V. 151. P. 349–363.
  39. Caljouw S.R., Veldkamp R., Lamoth C.J.C. Implicit and explicit learning of a sequential postural weight-shifting task in young and older adults // Front. Psychol. 2016. V. 7. P. 733. https://doi.org/10.3389/fpsyg.2016.00733
  40. Censor N. Generalization of perceptual and motor learning: a causal link with memory encoding and consolidation? // Neuroscience. 2013. V. 259. P. 201–207.
  41. Cohen M.X., Elger C.E., Ranganath C. Reward expectation modulates feedback-related negativity and EEG spectra // Neuroimage. 2007. V. 35. P. 968–978.
  42. DeLong M.R., Georgopoulos A.P. Motor functions of the basal ganglia as revealed by studies of single cell activity in the behaving primates // Adv. Neurobiol. 1979. V. 24. P. 131–140.
  43. DeLong M.R., Wichman T. Circuits and circuit disorders of the basal ganglia // Arch. Neurol. 2007. V. 64. P. 20–24.
  44. Denny-Brown D., Yanagisawa N. The role of basal ganglia in the initiation of movements // The basal ganglia / Ed. M.D. Yahr. N.Y.: Raven Press, 1976. P. 113–159.
  45. Divac I., Markowitch H.J., Pritzel M. Behavioral and anatomical consequences of small intrastriatal injections of kainic acid in the rat // Brain Res. 1978. V. 151. P. 523–532.
  46. Doumas J., Everard G., Dehem S., Lejeyne T. Serious games for upper limb rehabilitation after stroke: a meta-analysis // J. Neuroeng. Rehabil. 2021. V. 18 (1). P. 100. https://doi.org/10.1186/s12984-021-99889-1
  47. Dragoi G., Buzsaki G. Temporal encoding of place sequences by hippocampal cell assemblies // Neuron. 2006. V. 50. P. 145–157.
  48. Fabre M., Buser P. Structures involved in acquisition and performance of visually guided movements in the cat // Acta Neurobiol. Exp. 1980. V. 40. P. 95–116.
  49. Fregna G., Schincadlia N., Baroni A. et al. A novel immersive virtual reality environment for the motor rehabilitation of stroke patients: a feasibility study // Front. Robot. Al. 2022. V. 9. P. 906424. https://doi.org/10/3389/frobt.2022.906434
  50. Gamble K.R., Cummings T.J.Jr., Lo S.E. et al. Implicit sequence learning in people with Parkinson’s disease // Front. Hum. Neurosci. 2014. V. 8. P. 563.
  51. García-Ramos B.R., Villarroel R., González-Mora J.S. et al. Neurofunctional correlates of a neurorehabilitation system based on eye movements in chronic stroke impairment levels: a pilot study // Brain Behav. 2023. V. 13. P. e3049.
  52. Gellerman L.S. Chance orders of alternating stimuli in visual discrimination experiments // Ped. Sem. J. Gen. Psych. 1933. V. 42. P. 206–208.
  53. Ghilardi M.F., Moisello C., Silvestr G. et al. Learning of a sequential motor skill comprises explicit and implicit components that consolidate differently // J. Neurophysiol. 2009. V. 101. P. 2218–2229.
  54. Goldenberg G. Apraxia and the parietal lobes // Neuropsychologia. 2009. V. 47 (6). P. 1449–1459.
  55. Gonon F. Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo // J. Neurosci. 1997. V. 17. P. 5972–5978.
  56. Gray J.A. A general model of the limbic system and basal ganglia: applications to schizophrenia and compulsive behavior of the obsessive type // Rev. Neurol. 1994. V. 150 (8–9). P. 605–613.
  57. Graybiel A.M. The basal ganglia and chunking of action repertoires // Neurobiol. Learn. Mem. 1998. V. 70. P. 119–136.
  58. Groenewegen H.J. The basal ganglia and motor control // Neural Plast. 2003. V. 10 (1–2). P. 107–120.
  59. Gupta A.S., van der Meer M.A.A., Touretzky D.S., Redish A.D. Segmentation of spatial experience by hippocampal theta sequences // Nat. Neurosci. 2012. V. 15 (7). P. 1032–1039.
  60. Hassler R. Striatal control of locomotion, intentional actions and of integrations and perceptual activity // J. Neurol. Sci. 1978. V. 36. P. 187–224.
  61. Hayashi A., Kagamihara Y., Nakajima Y. et al. Disorder in reciprocal innervation upon initiation of voluntary movement in patients with Parkinson’s disease // Exp. Brain Res. 1988. V. 70. P. 437–440.
  62. Jasper H.H., Ajmone-Marsan С.A. Stereotaxic atlas of the diencephalon of the cat. Ottava: National Research Council of Canada, 1954. 242 p.
  63. Joel D., Weiner I. The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of striatum // Neuroscience. 2000. V. 96. P. 451–474.
  64. Kourtesis P., MacPherson S.E. How immersive virtual reality methods may meet the criteria of the National academy of neuropsychology and American academy of clinical neuropsychology: a soft ware review of the virtual reality everyday assessment lab (VR-EAL) // Comput. Hum. Behav. Rep. 2021. V. 4. P. 100151. https://doi.org/10.1016/j.chbr.2021.100151
  65. Kourtesis P., Collina S., Doumas I.A., MacPherson S.E. Validation of the virtual reality neuroscience questionnaire: maximum duration of immersive virtual reality sessions without the presence of pertinent adverse symptomatology // Front. Hum. Neurosci. 2019. V. 13. P. 417–513.
  66. Lang A., Gapenne O., Aubert D., Ferre-Chapus C. Implicit sequence learning in a continuous pursuit tracking task // Psychol. Res. 2013. V. 7 (5). P. 517–527.
  67. Liepmann H. Apraxia // Ergebnnisse der Gesamten Medzin. 1920. Bd. 1. S. 516–543.
  68. Martin J.H., Ghez C. Red nucleus and motor cortex: parallel motor systems for the initiation and control of skilled movement // Behav. Brain Res. 1988. V. 28. P. 217–223.
  69. Matsumoto N., Hanakawa T., Maki S. et al. Nigrostriatal dopamine system in learning to perform sequential motor task in a predictive manner // J. Neurophysiol. 1999. V. 82. P. 978–988.
  70. Matt E., Foki T., Fischmeister F. et al. Early disfunctions of fronto-parietal praxis networks in Parkinson’s disease // Brain Imaging Behav. 2017. V. 11 (2). P. 512–525.
  71. Mekbib D.B., Debelli D.K., Zhang I. et al. A novel fully immersive virtual reality environment for upper extremity rehabilitation in patients with stroke // Ann. NY Acad. Sci. 2021. V. 1473 (1). P. 75–89.
  72. Miklyaeva E.I., Varlinskaya E.I., Ioffe M.E. et al. Differences in the recovery rate of learned forelimb movement after ablation of the motor cortex in right and left hemisphere in white rats // Behav. Brain Res. 1993. V. 56 (2). P. 145–154.
  73. Miklyaeva E.I., Castaneda E.I., Wishaw I.Q. Skilled reaching deficits in unilateral dopamine-depleted rats: impairments in movements and posture and compensatory adjustments // J. Neurosci. 1994. V. 14. P. 7148–7158.
  74. Mink J.W. The basal ganglia: focused selection and inhibition of competing motor programs // Progr. Neurobiol. 1996. V. 50. P. 381–425.
  75. Mink J.W. The basal ganglia and involuntary movements // Arch. Neurol. 2003. V. 60. P. 1365–1368.
  76. Modrono C., Socas R., Hernandes-Martin E. et al. Neurofunctional correlates of eye to hand motor transfer // Hum. Brain Mapp. 2020. V. 41 (10). P. 2656–2668.
  77. Nirenberg M.J., Chan J., Pohorille A. et al. The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens // J. Neurosci. 1997. V. 17. P. 6899–6907.
  78. Parkinson J.A., Dalley J.W., Cardinal R.L. et al. Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive approach behavior: implications for mesoaccumbens dopamine function // Behav. Brain Res. 2002. V. 137. P. 149–163.
  79. Pohl P.S., McDowd J.M., Filion D.L. et al. Implicit learning of a perceptual-motor skill after stroke // Phys. Ther. 2001. V. 81. P. 1780–1789.
  80. Pramstaller P.P., Marsden C.D. The basal ganglia and apraxia // Brain. 1996. V. 119. P. 319–340.
  81. Rosenzopf H., Wiesen D., Basilakos A. et al. Mapping the human praxis network: an investigation of white matter disconnection in limb apraxia of gesture production // Brain Commun. 2022. V. 4 (1). P. fcac004.
  82. Schultz Q. Depletion of DA in the striatum as an experimental model of parkinsonism: direct effects and adaptive mechanisms // Progr. Neurobiol. 1982. V. 8. P. 121–166.
  83. Soares S., Atallah B., Paton J. Midbrain dopamine neurons control judgement of time // Science. 2016. V. 354. P. 1273–1277.
  84. Sperber C. Rethinking causality and data complexity in brain lesion-behaviour inference and its implications for lesion-behaviour modelling // Cortex. 2020. V. 126. P. 49–62.
  85. Sperber C. The strange role of brain lesion size in cognitive neuropsychology // Cortex. 2022. V. 146. P. 216–226.
  86. Steinfels G.F., Heym J., Strecker R.E., Jacobs B.L. Behavioral correlations of dopaminergic unit activity in freely moving cats // Brain Res. 1983. V. 258 (2). P. 217–228.
  87. Suaud-Chagny M.F., Dugast C., Chergui K. et al. Uptake of dopamine released by impulse flow in the rat mesolimbic and striatal systems in vivo // J. Neurochem. 1995. V. 65. P. 2603–2611.
  88. Suvorov N.F., Albertin S.V., Voilokova N.L. The neostriatum: neurophysiology and behavior // Sov. Sci. Rev. F. Physiol. Gen. Biol. 1988. V. 2. P. 597–677.
  89. Tabuchi E., Mulder A.B., Wiener S.I. Reward value invariant place responses and reward site associated activity in hippocampal neurons of behaving rats // Hippocampus. 2003. V. 13. P. 117–132.
  90. Villablanca J.R., Markus R.J., Olmstead S.E. Effects of caudate nuclei or frontal cortical ablations in cats. 1. Neurology and gross behavior // Exp. Neurol. 1976. V. 52. P. 389–420.
  91. Watabe-Uchida M., Zhu L., Ogawa S.K. et al. Whole-brain mapping of direct inputs to midbrain dopamine neurons // Neuron. 2012. V. 74. P. 858–873.
  92. Werner W. Neurons in the primate superior colliculus are active before and during arm movements to visual targets // Eur. J. Neurosci. 1993. V. 5. P. 335–340.
  93. Wickens J.R., Budd C.S., Hyland B.I. et al. Striatal contributions to reward and decision making. Making sense of regional variations in a reiterated processing matrix // Ann. NY Acad. Sci. 2007. V. 1104. P. 192–212.
  94. Wiener S.I., Shibata R., Tabuchi E. et al. Spatial and behavioral correlates in nucleus accumbens neurons in zones receiving hippocampal or prefrontal cortical inputs // Int. Congr. Ser. 2003. V. 1250. P. 275–292.
  95. Zastron T., Kessner S.S., Hollander K. et al. Structural connectivity changes within the basal ganglia after 8 weeks of sensory-motor training in individuals with chronic stroke // Ann. Phys. Rehabil. Med. 2019. V. 62 (3). P. 393–397.
  96. Zoli M., Torri C., Ferrari R. et al. The emergence of the volume transmission concept // Brain Res. Rev. 1998. V. 26. P. 136–147.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Connections of the dorsal and ventral striatum with motor, sensorimotor, and limbic structures of the brain (after Gray, 1994, with modifications). The neuronal structures of the dorsal ("motor") striatum are highlighted in tone in the diagram to distinguish them from the structures of the ventral ("limbic") striatum. The dotted line marks the shortest neuronal projections between the ventral and dorsal striatum. SMC (sensorimotor cortex); DS (dorsal striatum); GPe (outer segment of the globus pallidus); GPi (inner segment of the globus pallidus); VA/VL (ventral anterior and ventral lateral nuclei of the thalamus); CM/Pf (centromedian-parafascicular) — a complex of intralaminar nuclei of the thalamus; STN (subthalamus) — subthalamus; SNpc (compact part of substantia nigra) — compact area of ​​the substantia nigra; SNpr (reticular part of substantia nigra) — reticular area of ​​the substantia nigra; PPN (pedunculopontine nucleus) — pedunculopontine nucleus; PFC (prefrontal cortex) — prefrontal cortex; VS (ventral striatum) — ventral striatum (nucleus accumbens); EC (entorhinal cortex) — entorhinal cortex; SHS (septohippocampal system) — septohippocampal system; Subic (subicular region of the hippocampus) — subicular region of the hippocampus; Amy (amygdala) — amygdala; DM (dorsomedial nucleus of the thalamus) — dorsomedial nucleus of the thalamus; VP (ventral pallidum) — ventral pallidum; A10 (A10 of the ventral tegmental area) — section A10 of the ventral tegmental area (VTA); SC (superior colliculi of the corpora quadrigemina) — superior colliculi of the quadrigemina; HYP (hypothalamus) — hypothalamus; DA (dopamine) — dopamine; GABA (γ-aminobutyric acid) — gamma-aminobutyric acid; Glu (glutamate) — glutamate.

Download (280KB)
3. Fig. 2. (A) Effect of caudation on the implementation of instrumental food reflexes: a – correct alternation of positive and inhibitory stimuli; b – presentation of stimuli in random order; c – the same 2–3 months after caudation. (B) Change in the latent period of instrumental reactions upon presentation of positive and inhibitory stimuli in random order at different postoperative times. The abscissa axis shows the time after surgery, weeks. The ordinate axis shows the latent period, s. (C) Localization of damage to the dorsal striatum. (D) Development of a motor reflex in caudation-ectomized animals with stereotypical (top) and randomized (bottom) alternation of signals (according to: Albertin, 2011, 2015). The abscissa axis shows the time of development (days, weeks). The ordinate axis shows the percentage of correct answers. Solid horizontal lines – average level of correct answers in control animals. Dotted lines – after preliminary caudation.

Download (320KB)
4. Fig. 3. Effect of increasing the preoperative training time on the performance of a complex coordinated motor reaction of extracting food from a tube in laminectomized (C5/C6) animals (Albertin, 2014, 2023; Albertin, 2014). In the diagram: white columns — 1 week of preoperative training, dark columns — 8 weeks of preoperative training. The lower left of the figure shows the tensograms of the support load of the limbs (1, 2, 3, 4) for diagonal (A) and non-diagonal (B) forms of reorganization of the animal's posture. Other designations are given in the figure.

Download (141KB)
5. Fig. 4. Dynamics of the sensorimotor visual tracking reaction during the implementation of a tonic motor reaction in animals with an intrastriatal injection of saline solution — control (a) and the neurotransmitter dopamine (b, c) (Albertin, 2017b, 2021). On the electrogram from top to bottom: mechanogram (MCG) of the movement of the animal's working paw (squeezing the manipulator lever and holding it for 8-12 s, which is necessary to supply food and capture it with the working paw); electromyograms (EMG) of the flexor muscle (m. biceps brachii) and extensor muscle (m. triceps brachii) of the working paw; EMG of the neck muscles; electrooculogram (EOG); a mark for the inclusion of sensory signals. Time calibration is 1 s. The speed of movement of visual signals on the screen is 6°/s.

Download (723KB)
6. Fig. 5. Selection of the preferred reinforcer by experimental animals in a maze with differential reinforcement with simultaneous activation of local visual signals in all arms of the radial maze — Tests 1 and 1a (Albertin, 2021; Albertin et al., 2000; Tabuchi et al., 2003; Albertin, Wiener, 2015). The numbers in the figure are the number of reinforcement drops in the arms of the maze. The circles with arrows are the direction of the animal's view when determining the localization of the preferred reinforcer in the maze using extralabyrinthine navigation cues. On the top right is a crosscorrelogram of synchronous neural activity in the theta range of the nucleus accumbens and hippocampus, recorded when choosing the preferred (largest) reinforcement. Bottom right: the level of correct responses when choosing the greatest reinforcement before and after damage to the ventral striatum (n. accumbens).

Download (145KB)

Note

Статья посвящена И.П. Павлову, заложившему основы системного подхода к изучению целенаправленного, последовательно выполняемого двигательного поведения животных и человека в норме и при патологии центральной нервной системы


Copyright (c) 2024 Russian Academy of Sciences