Monocyte Subpopulations Analysis in Patients under Cardiac Surgery in Conditions of Modified Extracorporeal Circulation Using Hemodiafiltration
- Authors: Zemskov V.M.1, Kornelyuk R.A.1, Sharanda A.V.1, Plotnikov G.P.1, Popov V.A.1, Zemskov A.M.2, Demidova V.S.1, Kulikova A.N.1, Shishkina N.S.1, Balbutsky A.V.1, Solovieva M.S.1, Kozlova M.N.1, Vasiliev O.S.3
-
Affiliations:
- Vishnevsky National Medical Research Center of Surgery
- Burdenko Voronezh State Medical University
- Russian University of Sport “GTSOLIFK”
- Issue: Vol 143, No 6 (2023)
- Pages: 580-586
- Section: Articles
- Submitted: 02.02.2025
- Published: 01.11.2023
- URL: https://rjpbr.com/0042-1324/article/view/653225
- DOI: https://doi.org/10.31857/S004213242306011X
- EDN: https://elibrary.ru/TVZFWL
- ID: 653225
Cite item
Full Text
Abstract
In patients undergoing cardiosurgical operations under conditions of extracorporeal circulation, continued high-volume controlled hemodiafiltration was used, the content of subpopulations of monocytes M1, M2, M3, CD4+ monocytes and total monocytes was studied in the circulation before surgery and on days 3 and 10 after it. Previously unknown data have been discovered that can be used in the diagnosis and prognosis of cardiac surgery.
About the authors
V. M. Zemskov
Vishnevsky National Medical Research Center of Surgery
Author for correspondence.
Email: arturrego@yandex.ru
Russia, Moscow
R. A. Kornelyuk
Vishnevsky National Medical Research Center of Surgery
Email: arturrego@yandex.ru
Russia, Moscow
A. V. Sharanda
Vishnevsky National Medical Research Center of Surgery
Email: arturrego@yandex.ru
Russia, Moscow
G. P. Plotnikov
Vishnevsky National Medical Research Center of Surgery
Email: arturrego@yandex.ru
Russia, Moscow
V. A. Popov
Vishnevsky National Medical Research Center of Surgery
Email: arturrego@yandex.ru
Russia, Moscow
A. M. Zemskov
Burdenko Voronezh State Medical University
Email: arturrego@yandex.ru
Russia, Voronezh
V. S. Demidova
Vishnevsky National Medical Research Center of Surgery
Email: arturrego@yandex.ru
Russia, Moscow
A. N. Kulikova
Vishnevsky National Medical Research Center of Surgery
Email: arturrego@yandex.ru
Russia, Moscow
N. S. Shishkina
Vishnevsky National Medical Research Center of Surgery
Email: arturrego@yandex.ru
Russia, Moscow
A. V. Balbutsky
Vishnevsky National Medical Research Center of Surgery
Email: arturrego@yandex.ru
Russia, Moscow
M. S. Solovieva
Vishnevsky National Medical Research Center of Surgery
Email: arturrego@yandex.ru
Russia, Moscow
M. N. Kozlova
Vishnevsky National Medical Research Center of Surgery
Email: arturrego@yandex.ru
Russia, Moscow
O. S. Vasiliev
Russian University of Sport “GTSOLIFK”
Email: arturrego@yandex.ru
Russia, Moscow
References
- Аникина Е.В., Цыганкова А.Р. Клеточные маркеры хронической обструктивной болезни легких от воздействия аэрозолей, содержащих наночастицы // Мед. труда пром. экол. 2020. Т. 60 (11). С. 723–726.
- Ашмарин И.П., Воробьев А.А. Статистические методы в микробиологических исследованиях. Л.: Медгиз, 1962. 180 с.
- Ганичева А.В., Ганичев А.В. Построение доверительных интервалов на основе неравенства Чебышева и рекуррентного метода // Вестн. НГУЭУ. 2022. № 1. С. 211–223. https://doi.org/10.34020/2073-6495-2022-1-211-223
- Григорьев Е.В., Плотников Г.П., Матвеева В.Г. и др. Способ предупреждения развития системного воспалительного ответа у кардиохирургических пациентов после искусственного кровообращения. Патент RU 2641173 C1. Заяв. 31.10.2016. Опубл. 16.01.2018.
- Евгина С.А., Савельев Л.И. Современные теория и практика референтных интервалов // Лаб. служба. 2019. Т. 8 (2). С. 36–44. https://doi.org/10.17116/labs2019802136
- Земсков В.М., Алексеев А.А., Козлова М.Н. и др. Иммунная диагностика септических осложнений при ожогах // Успехи соврем. биол. 2015. Т. 135 (6). С. 531–541.
- Земсков В.М., Ревишвили А.Ш., Козлова М.Н. и др. Анализ субпопуляций моноцитов при сердечно-сосудистой, ожоговой и иной патологии (классификация 2010 г.) // Мед. совет. 2023. Т. 17 (4). С. 8–17.
- Курбацкий А.И. Лекция 5. Доверительные интервалы. М.: МШЭ МГУ, 2020. С. 1–32.
- Ревишвили А.Ш., Чагирев В.Н., Плотников Г.П. и др. Способ интраоперационной стабилизации гомеостаза пациента при кардиохирургическом вмешательстве в условиях длительного искусственного кровообращения. Патент RU 2723752 C1. Заяв. 25.02.2019. Опубл. 17.06.2020.
- Титов Л.Б. Моноциты, макрофаги, дендритные и миелоидные супрессорные клетки: генез, классификация, иммунобиологические свойства // Весці Нацыянальнай акадэміі навук Беларусі. Серыя медыцынскіх навук. 2018. Т. 15 (3). С. 363–382.
- Хубулава Г.Г., Марченко С.П., Дубова Е.В., Суворов В.В. Роль модифицированной ультрафильтрации в уменьшении системных проявлений воспаления в кардиохирургии // Педиатр. 2016. Т. 7 (1). С. 106–110.
- Ярмамедов Д.M., Липатов В.А. Метод доверительных интервалов в биологических и медицинских исследованиях // Innova. 2016. № 3 (4). С. 13–14. https://doi.org/10.21626/innova/2016.3/03
- Borst J., Ahrends T., Bąbała N. et al. CD4+ T cell help in cancer immunology and immunotherapy // Nat. Rev. Immunol. 2018. V. 18 (10). P. 635–647. https://doi.org/10.1038/s41577-018-0044-0
- Chapman C.M., Beilby J.P., McQuillan B.M. et al. Monocyte count, but not C-reactive protein or interleukin-6, is an independent risk marker for subclinical carotid atherosclerosis // Stroke. 2004. V. 35. P. 1619–1624.
- Crowe S., Mills J., McGrath M.S. Quantitative immunocytofluorographic analysis of CD4 surface antigen expression and HIV infection of human peripheral blood monocyte/macrophages // AIDS Res. Hum. Retroviruses. 1987. V. 3 (2). P. 135–145. https://doi.org/10.1089/aid.1987.3.135
- Geleziunas R., Bour S., Boulerice F. et al. Diminution of CD4 surface protein but not CD4 messenger RNA levels in monocytic cells infected by HIV-1 // AIDS. 1991. V. 5. P. 29–33. https://doi.org/10.1097/00002030-199101000-00004
- Graziani-Bowering G.M., Filion L.G. Down regulation of CD4 expression following isolation and culture of human monocytes // Clin. Diagn. Lab. Immunol. 2000. V. 7 (2). P. 182–191. https://doi.org/10.1128/CDLI.7.2.182-191.2000
- Graziani-Bowering G.M., Filion L.G., Thibault P., Kozlowski M. CD4 is active as a signaling molecule on the human monocytic cell line Thp-1 // Exp. Cell Res. 2002. V. 279 (1). P. 141–152. https://doi.org/10.1006/excr.2002.5581
- Hristov M., Schmitz S., Nauwelaers F., Weber C. A flow cytometric protocol for enumeration of endothelial progenitor cells and monocyte subsets in human blood // J. Immunol. Methods. 2012. V. 381. P. 9–13.
- Ji J., Sahu G.K., Braciale V.L., Cloyd M. HIV-1 induces IL-10 production in human monocytes via a CD4-independent pathway // Int. Immunol. 2005. V. 17 (6). P. 729–736. https://doi.org/10.1093/intimm/dxh252
- Kampalath B., Cleveland R.P., Kass L. Reduced CD4 and HLA-DR expression in neonatal monocytes // Clin. Immunol. Immunopathol. 1998. V. 87 (1). P. 93–100. https://doi.org/10.1006/clin.1997.4505
- Kawakami Y. Autoimmune diseases // Chiryo. 1962. V. 44. P. 2145–2154.
- Kazazi F., Mathijs J.M., Foley P., Cunningham A.L. Variations in CD4 expression by human monocytes and macrophages and their relationship to infection with the human immunodeficiency virus // J. Gen. Virol. 1989. V. 70 (10). P. 2661–2672. https://doi.org/10.1099/0022-1317-70-10-2661
- Neudorf S., DeLaat C., Jones M. Expression of the CD4 molecule on acute nonlymphocytic leukemia (ANLL) cell lines // J. Clin. Lab. Anal. 1989. V. 3 (5). P. 312–315. https://doi.org/10.1002/jcla.1860030510
- Pietrella D., Monari C., Retini C. et al. Cryptococcus neoformans and Candida albicans regulate CD4 expression on human monocytes // J. Infect. Dis. 1998. V. 178 (5). P. 1464–1471. https://doi.org/10.1086/314458
- Ruff M.R., Martin B.M., Ginns E.I. et al. CD4 receptor binding peptides that block HIV infectivity cause human monocyte chemotaxis. Relationship to vasoactive intestinal polypeptide // FEBS Lett. 1987. V. 211 (1). P. 17–22. https://doi.org/10.1016/0014-5793(87)81265-6
- Ruterbusch M., Pruner K.B., Shehata L., Pepper M. In vivo CD4+ T cell differentiation and function: revisiting the Th1/Th2 paradigm // Annu. Rev. Immunol. 2020. V. 38. P. 705–725. https://doi.org/10.1146/annurev-immunol-103019-085803
- Scriba A., Schneider M., Grau V. et al. Rat monocytes up-regulate NKR-P1A and down-modulate CD4 and CD43 during activation in vivo: monocyte subpopulations in normal and IFN-γ-treated rats // J. Leukoc. Biol. 1997. V. 62 (6). P. 741–752. https://doi.org/10.1002/jlb.62.6.741
- Szabo G., Miller C.L., Kodys K. Antigen presentation by the CD4 positive monocyte subset // J. Leukoc. Biol. 1990. V. 47 (2). P. 111–120. https://doi.org/10.1002/jlb.47.2.111
- Zhen A., Krutzik S.R., Levin B.R. et al. CD4 ligation on human blood monocytes triggers macrophage differentiation and enhances HIV infection // J. Virol. 2014. V. 88 (17). P. 9934–9946. https://doi.org/10.1128/jvi.00616-14
Supplementary files
