The influence of low-molecular NGF mimetic dipeptide GK-2 behavior of mice from two outbred strains differing by brain weight

Cover Page

Cite item

Full Text

Abstract

The investigation includes the analysis of nootropic effects of dimeric dipeptide, substance GK-2, nerve growth factor mimetic, in the cognitive test (elementary logic task) in mice of two strains selected for large and small relative brain weight (strains LB and SB). The influence of dipeptide (0.5 mg/kg, injected i.p., sub chronically) on cognitive test solution in mice of different genotypes had been opposite by “sign” — the proportion of mice, which solved the test successfully in LB strain was lower than that in controls, while it was higher in SB mice. It was also demonstrated that in neophagophobia test the dipeptide infusion induce more active reaction to the novel food with more clear cut reaction in LB mice. The data on genotype-dependent changes in behavior after GK-2 infusion are important for more extensive characteristic of GK-2 pharmacological properties as the plausible therapeutic drug.

Full Text

Restricted Access

About the authors

O. V. Perepelkina

Lomonosov Moscow State University

Email: ingapoletaeva@mail.ru
Russian Federation, Moscow

I. I. Poletaeva

Lomonosov Moscow State University

Author for correspondence.
Email: ingapoletaeva@mail.ru
Russian Federation, Moscow

P. Yu. Povarnina

Federal Center for Original and Perspective Technologies Investigations

Email: ingapoletaeva@mail.ru
Russian Federation, Moscow

T. A. Gudasheva

Federal Center for Original and Perspective Technologies Investigations

Email: ingapoletaeva@mail.ru
Russian Federation, Moscow

References

  1. Антипова Т.А., Гудашева Т.А., Середенин С.Б. Исследование in vitro нейропротективных свойств нового оригинального миметика фактора роста нервов ГК-2 // Бюл. эксп. биол. мед. 2010. Т. 150 (11). С. 538–541.
  2. Антипова Т.А., Деев И.Е., Гудашева Т.А. и др. Доказательство селективности взаимодействия дипептидного миметика фактора роста нервов ГК-2 с TrkA-рецептором с использованием нокаутных по генам Trka и Trkb клеток линии НТ-22 // Хим. фарм. журн. 2022. Т. 56 (12). С. 18–22. https://doi.org/10.30906/0023-1134-2022-56-12-18-22
  3. Бельник А.П., Островская Р.У., Полетаева И.И. Зависимые от генотипа изменения поведения мышей под влиянием ноопепта // Журн. высш. нерв. деят. 2007а. Т. 57 (5). С. 613–617.
  4. Бельник А.П., Островская Р.У., Полетаева И.И. Зависимые от генотипа особенности поведения мышей в когнитивных тестах. Влияние ноопепта // Журн. высш. нерв. деят. 2007б. Т. 57 (6). С. 717–724.
  5. Васильева Е.В., Салимов Р.М., Ковалев Г.И. Влияние ноотропных средств на поведение мышей BALB/cи C57BL/6 в крестообразном лабиринте // Эксп. клин. фармакол. 2012. Т. 75 (7). С. 3–7.
  6. Васильева Е.В., Кондрахин Е.А., Абдуллина А.А. и др. Преобладание ноотропного или анксиолитического эффекта пептидов селанк, семакс и ноопепт в зависимости от пути их введения мышам BALB/c и С57BL/6 // Нейрохимия. 2020. Т. 37 (3). С. 208–219. https://doi.org/10.31857/S1027813320030115
  7. Волкова А.А., Поварнина П.Ю., Никифоров Д.М. и др. Сравнительное изучение мнемотропной активности димерных дипептидных миметиков отдельных петель NGF и BDNF в тесте распознавания нового объекта у крыс // Хим. фарм. журн. 2022. Т. 56 (4). С. 3–6. https://doi.org/10.30906/0023-1134-2022-56-4-3-6
  8. Волкова А.А., Поварнина П.Ю., Гудашева Т.А. Ноотропное действие дипептидного миметика NGF на модели болезни Альцгеймера // Вопр. биол. мед. фарм. химии. 2023. Т. 26 (11). С. 3–11. https://doi.org/10.29296/25877313-2023-11-10
  9. Гудашева Т.А., Антипова Т.А., Середенин С.Б. Новые низкомолекулярные миметики фактора роста нервов // Докл. АН. 2010. Т. 4 (1). С. 549–552.
  10. Ковалев Г.И., Кондрахтин Е.А., Салимов Р.М., Незнамов Г.Г. Динамика поведенческих и нейрохимических эффектов после длительного введения ноопепта мышам С57BL/6 и BALB/c // Эксп. клин. фармакол. 2014. Т. 77 (12). С. 3–9.
  11. Маркина Н.В., Попова Н.В., Полетаева И.И. Межлинейные различия в поведении мышей, селектированных на большую и малую массу мозга // Журн. высш. нервн. деят. 1999а. Т. 49 (1). С. 59–67.
  12. Маркина Н.В., Попова Н.В., Салимов Р.М. и др. Сравнение уровней тревожности и стресс-реактивности у мышей, селектированных на большой и малый вес мозга // Журн. высш. нервн. деят. 1999б. Т. 49 (5). С. 789–798.
  13. Перепелкина О.В., Маркина Н.В., Полетаева И.И. Способность к экстраполяции направления движения у мышей, селектированных на большой и малый вес мозга: влияние пребывания в обогащенной среде // Журн. высш. нерв. деят. 2006. Т. 56 (2). С. 282–286.
  14. Перепелкина О.В., Огиенко Н.А., Сулейманова А.Д., Полетаева И.И. Стресс иммобилизации и поведение мышей с разным весом мозга // Журн. высш. нерв. деят. 2021. Т. 71 (1). С. 104–112. https://doi.org/10.31857/S0044467721010081
  15. Поварнина П.Ю., Воронцова О.Н., Гудашева Т.А. и др. Оригинальный дипептидный миметик фактора роста нервов ГК-2 восстанавливает нарушенные когнитивные функции в крысиных моделях болезни Альцгеймера // Acta Naturae. 2013. Т. 5 (3). С. 88–95.
  16. Попова Н.В., Полетаева И.И., Романова Л.Г. Способность к обучению и экстраполяции у мышей, селектированных на разный вес мозга // Журн. высш. нервн. деят. 1981. Т. 31 (3). С. 550–555.
  17. Сазонова Н.М., Тарасюк А.В., Курилов Д.В. и др. Синтез димерного дипептидного миметика фактора роста нервов ГК-2, потенциального нейропротективного препарата // Хим. фарм. журн. 2015. Т. 49 (7). С. 10–19.
  18. Середенин С.Б., Гудашева Т.А. Дипептидные миметики нейротрофинов NGF и BDNF. Патент РФ № 2410392. 2011. Дата приоритета 16.02.2009.
  19. Середенин С.Б., Поварнина П.Ю., Гудашева Т.А. Экспериментальная оценка терапевтического окна нейропротективной активности препарата ГК-2, низкомолекулярного миметика фактора роста нервов // Журн. неврол. психиатр. 2018. Т. 118 (7). С. 49–53. http://doi.org/10.17116/jnevro20181187149
  20. Akillioglu K., Babar Melik E., Melik E., Kocahan S. The investigation of neonatal MK-801 administration and physical environmental enrichment on emotional and cognitive functions in adult Balb/c mice // Pharmacol. Biochem. Behav. 2012. V. 102 (3). P. 407–414. https://doi.org/10.1016/j.pbb.2012.06.006
  21. Aloe L., Tirassa P., Bracci-Laudiero L. Nerve growth factor in neurological and non-neurological diseases: basic findings and emerging pharmacological prospectives // Curr. Pharm. Des. 2001. V. 7 (2). P. 113–123. https://doi.org/10.2174/1381612013398383
  22. Ben Abdallah N.M., Fuss J., Trusel M. et al. The puzzle box as a simple and efficient behavioral test for exploring impairments of general cognition and executive functions in mouse models of schizophrenia // Exp. Neurol. 2011. V. 227 (1). P. 42–52. https://doi.org/10.1016/j.expneurol.2010.09.008
  23. Ciafrè S., Ferraguti G., Tirassa P. et al. Nerve growth factor in the psychiatric brain // Riv. Psichiatr. 2020. V. 55 (1). P. 4–15. https://doi.org/10.1708/3301.32713
  24. Deacon R.M. Hyponeophagia: a measure of anxiety in the mouse // J. Vis. Exp. 2011. V. 51. P. 2613. https://doi.org/10.3791/2613
  25. Elias M.F. Differences in spatial discrimination reversal learning for mice genetically selected for high brain weight and unselected controls // Percept. Mot. Skills. 1969. V. 28. P. 707–712. https://doi.org/10.2466/pms.1969.28.3.707
  26. Eu W.Z., Chen Y.J., Chen W.T. et al. The effect of nerve growth factor on supporting spatial memory depends upon hippocampal cholinergic innervation // Transl. Psychiatry. 2021. V. 11 (1). P. 162. https://doi.org/10.1038/s41398-021-01280-3
  27. Fendt M. Expression and conditioned inhibition of fear-potentiated startle after stimulation and blockade of AMPA/Kainate and GABA(A) receptors in the dorsal periaqueductal gray // Brain Res. 2000. V. 880 (1–2). P. 1–10. https://doi.org/10.1016/s0006-8993(00)02665-2
  28. Fischer W., Björklund A., Chen K., Gage F.H. NGF improves spatial memory in aged rodents as a function of age // J. Neurosci. 1991. V. 11 (7). P. 1889–1906. https://doi.org/10.1523/JNEUROSCI.11-07-01889.1991
  29. Fuller J.L. Fuller BWS lines: history and results // Development and evolution of brain size / Eds M.E. Hahn, C. Jensen, B.C. Dudek. N.Y.: Acad. Press, 1979. P. 518–539.
  30. Genrikhs E.E., Voronkov D.N., Kapkaeva M.R. et al. The delayed protective effect of GK-2, а dipeptide mimetic of nerve growth factor, in a model of rat traumatic brain injury // Brain Res. Bull. 2018. V. 140. P. 148–153. https://doi.org/10.1016/j.brainresbull.2018.05.002
  31. Gonsiorek J.C., Donovick P.J., Burright R.G., Fuller J.L. Aggression in low and high brain weight mice following septal lesions // Physiol. Behav. 1974. V. 12. P. 813–818. https://doi.org/10.1016/0031-9384(74)90018-3
  32. Gudasheva T.A., Povarnina P.Y., Antipova T.A. et al. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction // J. Biomed. Sci. 2015. V. 22. P. 106. https://doi.org/10.1186/s12929-015-0198-z
  33. Gudasheva T.A., Ostrovskaya R.U., Seredenin S.B. Novel technologies for dipeptide drugs design and their implantation // Curr. Pharm. Des. 2018. V. 24 (26). P. 3020–3027. https://doi.org/10.2174/1381612824666181008105641
  34. Henderson N.D. Brain weight changes resulting from enriched rearing conditions. A diallel analysis // Develop. Psychobiol. 1973. V. 6. P. 367–376. https://doi.org/10.1002/dev.420060410
  35. Kruska D.C. Comparative quantitative study on brains of wild and laboratory rats. I. Comparison of volume of total brain and classical brain parts // J. Hirnforsch. 1975. V. 16. P. 469–483.
  36. Kruska D.C. On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization // Brain Behav. Evol. 2005. V. 65. P. 73–108. https://doi.org/10.1159/000082979
  37. Liu A., Prenger M.S., Norton D.D. et al. Nerve growth factor uses Ras/ERK and phosphatidylinositol 3-kinase cascades to up-regulate the N-methyl-D-aspartate receptor 1 promoter // J. Biol. Chem. 2001. V. 276 (48). P. 45372–45379.
  38. Markina N.V., Salimov R.M., Poletaeva I.I. Behavioral screening of two mouse lines selected for different brain weight // Prog. Neuropsychopharm. Biol. Psych. 2001. V. 25 (5). P. 1083–1109. https://doi.org/10.1016/s0278-5846(01)00169-5
  39. Paredes D., Granholm A.C., Bickford P.C. Effects of NGF and BDNF on baseline glutamate and dopamine release in the hippocampal formation of the adult rat // Brain Res. 2007. V. 1141. P. 56–64. https://doi.org/10.1016/j.brainres.2007.01.018
  40. Perepelkina O.V., Poletaeva I.I. Selection of mice for object permanence cognitive task solution // Neurol. Int. 2022. V. 14 (3). P. 696–706. https://doi.org/10.3390/neurolint14030058 PMID: 36135993
  41. Perepelkina O.V., Poletaeva I.I. Cognitive test solution in mice with different brain weights after atomoxetine // Neurol. Int. 2023. V. 15 (2). P. 649–660. https://doi.org/10.3390/neurolint15020041
  42. Poletaeva I.I., Popova N.V., Romanova L.G. Genetic aspects of animal reasoning // Behav. Genet. 1993. V. 23 (5). P. 467–475. https://doi.org/10.1007/BF01067982
  43. Reimer A.E., De Oliveira A.R., Brandão M.L. Glutamatergic mechanisms of the dorsal periaqueductal gray matter modulate the expression of conditioned freezing and fear-potentiated startle // Neuroscience. 2012. V. 219. P. 72–81. https://doi.org/10.1016/j.neuroscience.2012.06.005
  44. Rensch B. Increase in learning capability with increase of brain-size // Amer. Natur. 1956. V. 90. P. 81–96.
  45. Roderick T.H., Wimer R.E., Wimer C.C., Schwartzkroin B. Genetic and phenotypic variation in weight of brain and spinal cord between inbred strains of mice // Brain Res. 1973. V. 64. P. 345–353. https://doi.org/10.1016/0006-8993(73)90188-1
  46. Rocco M.L., Soligo M., Manni L., Aloe L. Nerve growth factor: early studies and recent clinical trials // Curr. Neuropharmacol. 2018. V. 16 (10). P. 1455–1465. https://doi.org/10.2174/1570159X16666180412092859
  47. Rosenzweig M.R., Bennet E.L. Psychobiology of plasticity: effects of training and experience on brain and behavior // Behav. Brain Res. 1996. V. 78. P. 57–65. https://doi.org/10.1016/0166-4328(95)00216-2
  48. Rozeske R.R., Jercog D., Karalis N. et al. Prefrontal-periaqueductal gray-projecting neurons mediate context fear discrimination // Neuron. 2018. V. 97 (4). P. 898–910. https://doi.org/10.1016/j.neuron.2017.12.044
  49. Seredenin S.B., Gudasheva T.A. Dipeptide mimetics of NGF and BDNF neurotrophins. Patent China. 102365294B. 2016. Priority date 16.02.2009.
  50. Seredenin S.B., Gudasheva T.A. Dipeptide mimetics of NGF and BDNF neurotrophins. Patent India. 296506. 2018. Priority date 16.02.2009.
  51. Seredenin S.B., Gudasheva T.A. Dipeptide mimetics of NGF and BDNF neurotrophins. Patent EP 2397488B1. 2019. Priority date 16.02.2009.
  52. Terry A.V. Jr., Kutiyanawalla A., Pillai A. Age-dependent alterations in nerve growth factor (NGF)-related proteins, sortilin, and learning and memory in rats // Physiol. Behav. 2011. V. 102 (2). P. 149–157. https://doi.org/10.1016/j.physbeh.2010.11.005
  53. Wahlsten D., Bulman-Fleming B., Wainwright P.E. et al. Effects of environmental enrichment on cortical depth and Morris-maze performance in B6D2F2 mice exposed to ethanol // Neurotoxicol. Teratol. 1993. V. 15. P. 11–20. https://doi.org/10.1016/0892-0362(93)90040-u

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The mouse removes the plug that closes the hole in the dark compartment of the experimental chamber.

Download (1MB)
3. Fig. 2. LP (s) of the solution of the test for searching for an entrance to a shelter in 3-month-old mice of the BM and MM lines in the first (open hole) and second (hole masked with wood shavings) presentations of the test. The data are presented as means and standard errors of the mean. Gray columns - administration of the dipeptide (5 days); black columns - control (administration of physiological solution); # - trend (p < 0.1), compared with the control groups of the same line (two-factor ANOVA, post hoc LSD-test according to Fisher).

Download (149KB)
4. Fig. 3. LP (s) of the solution of the test for finding an entrance to a shelter in 8-month-old mice of the BM and MM lines in the first (open hole) and second (hole masked with wood shavings) presentations of the test. The data are presented as means and standard errors of the mean. Gray columns - administration of the dipeptide (single time), black columns - control (administration of physiological solution); * - significant (p < 0.05) difference from the same group of the MM line (two-factor ANOVA, post hoc LSD-test according to Fisher).

Download (147KB)
5. Fig. 4. The proportions (%) of successful solutions in the shelter entrance search test in 8-month-old BM and MM mice with a hole closed with a plug (sum of two presentations). The data are presented as means. Gray bars — dipeptide administration, black bars — control (physiological solution administration); *** — significant (p < 0.001) difference from the same MM group; << — differences between the group after the dipeptide and the control group approach significance (Fisher's φ method, t = 1.8 and t =1.83, while p < 0.05 at t = 2.0).

Download (137KB)
6. Fig. 5. Response to novel food in a novel (non-fearful) environment in BM and MM mice of two age groups exposed to the peptide (gray bars) and after administration of saline (black bars). Data are presented as means and standard errors of the mean. (a) — amount of cheese eaten by 3-month-old mice in 5 min. of the test; (b) — amount of cheese eaten by 8-month-old mice in 5 min. of the test; (c) — number of approaches by 3-month-old mice to the feeder with novel food; (d) — number of approaches by 8-month-old mice to the feeder with novel food; ** — statistically significant difference (p < 0.01) from the parameters of the corresponding control group (two-factor ANOVA, post hoc Fisher's LSD test).

Download (269KB)

Copyright (c) 2024 Russian Academy of Sciences