Genetically Encoded Biosensor HyPer as a Tool for Quantification of Intracellular Hydrogen Peroxide Concentrations

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

This mini-review systematizes information on methods for quantitative assessment of intracellular hydrogen peroxide concentration based on the use of a genetically encoded peroxide sensor HyPer. Two approaches are being considered: 1) calibration of the biosensor using exogenous hydrogen peroxide, based on assessing the rate of peroxide penetration into cells and intracellular peroxidase activity; 2) direct determination of the intracellular peroxide content, based on measuring the level of oxidation of the biosensor, the oxidation reaction constant and the reduction reaction constant of HyPer in the cells. The use of these methods makes it possible to solve a wide range of tasks in cellular redox biology — to determine the range of physiological and damaging concentrations of hydrogen peroxide in cells, to evaluate the effectiveness of the antioxidant defense system in various cellular compartments under conditions of oxidative stress, to determine the contribution of various enzymatic systems to the peroxidase activity of cells, and to characterize antioxidant defense systems in various biological contexts (in the process of cellular senescence, differentiation, reprogramming, during the development of pathologies). The described methods can be adapted for other genetically encoded hydrogen peroxide biosensors.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Lyublinskaya

Institute of Cytology RAS

Хат алмасуға жауапты Автор.
Email: o.lyublinskaya@mail.ru
Ресей, St. Petersburg, 194064, Tikhoretskii pr., 4

J. Ivanova

Institute of Cytology RAS

Email: o.lyublinskaya@mail.ru
Ресей, St. Petersburg, 194064, Tikhoretskii pr., 4

Әдебиет тізімі

  1. Antunes F., Cadenas E. 2000. Estimation of H2O2 gradients across biomembranes. FEBS Lett. V. 475. P. 121.
  2. Belousov V. V., Fradkov A. F., Lukyanov K. A., Staroverov D. B., Shakhbazov K. S., Terskikh A. V., Lukyanov S. A. 2006. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods V. 3. P. 281.
  3. Bilan D. S., Belousov V. V. 2016. HyPer family probes: state of the art. Antioxidants Redox Signal. V. 24. P. 731.
  4. Bilan D. S., Pase L., Joosen L., Gorokhovatsky A. Y., Ermakova Y. G., Gadella T. W., Grabher C., Schultz C., Lukyanov S., Belousov V. V. 2013. HyPer-3: a genetically encoded H2O2 probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. V. 8. P. 535.
  5. Brito P. M., Antunes F. 2014. Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins. Front. Chem. V. 2. P. 82.
  6. Huang B. K., Sikes H. D. 2014. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration. Redox Biol. V. 2. P. 955.
  7. Huang B. K., Stein K. T., Sikes H. D. 2016. Modulating and measuring intracellular H2O2 using genetically encoded tools to study its toxicity to human cells. ACS Synth. Biol. V. 5. P. 1389.
  8. Ivanova J., Guriev N., Pugovkina N., Lyublinskaya O. 2023. Inhibition of thioredoxin reductase activity reduces the antioxidant defense capacity of human pluripotent stem cells under conditions of mild but not severe oxidative stress. Biochem. Biophys. Res. Commun. V. 642. P. 137.
  9. Lee C., Lee S. M., Mukhopadhyay P., Kim S. J., Lee S. C., Ahn W. S., Yu M. H., Storz G., Ryu S. E. 2004. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. V. 11. P. 1179.
  10. Lim J., Langford T., Huang B., Deen W., Sikes H. 2016. A reaction-diffusion model of cytosolic hydrogen peroxide. Free Radic. Biol. Med. V. 90. P. 85.
  11. Lyublinskaya O. G., Antonov S. A., Gorokhovtsev S. G., Pugovkina N. A., Kornienko J. S., Ivanova J. S., Shatrova A. N., Aksenov N. D., Zenin V. V., Nikolsky N. N. 2018. Flow cytometric HyPer-based assay for hydrogen peroxide. Free Radic. Biol. Med. V. 128 P. 40.
  12. Lyublinskaya O., Antunes F. 2019. Measuring intracellular concentration of hydrogen peroxide with the use of genetically encoded H2O2 biosensor HyPer. Redox Biol. V. 24: 101200.
  13. Malinouski M., Zhou Y, Belousov V, Hatfield D, Gladyshev V. 2011. Hydrogen peroxide probes directed to different cellular compartments. PLoS One. V. 6: e14564.
  14. Meyer A. J., Dick T. P. 2010. Fluorescent protein-based redox probes. Antioxid. Redox Signal. V. 13. P. 621.
  15. Milkovic L., Zarkovic N., Saso L. 2017. Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol. V. 12. P. 727.
  16. Mishina N., Bogdanova Y., Ermakova Y., Panova A., Kotova D., Bilan D., Steinhorn B., Arnér E., Michel T., Belousov V. 2019. Which antioxidant system shapes intracellular H2O2 gradients? Antioxid. Redox Signal. V. 31. P. 664.
  17. Mishina N., Markvicheva K., Bilan D., Matlashov M., Shirmanova M., Liebl D., Schultz C., Lukyanov S., Belousov V. 2013. Visualization of intracellular hydrogen peroxide with HyPer, a genetically encoded fluorescent probe. Methods Enzymol. V. 526. P. 45.
  18. Pak V. V., Ezeriņa D., Lyublinskaya O. G., Pedre B., Tyurin-Kuzmin P.A., Mishina N. M., Thauvin M., Young D., Wahni K., Martínez Gache S. A., Demidovich A. D., Ermakova Y. G., Maslova Y. D., Shokhina A. G., Eroglu E., et al. 2020. Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab. V. 31. P. 642.
  19. Sies H. 2021. Oxidative eustress: on constant alert for redox homeostasis. Redox Biol. V. 41: 101867.
  20. Sies H., Berndt C., Jones D. P. 2017. Oxidative stress. Annu Rev. Biochem. V. 86. P. 715.
  21. Sies H., Jones D. P. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. V. 21. P. 363.
  22. Sporn M. B., Liby K. T. 2012. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer. V. 12. P. 564.
  23. Zenin V., Ivanova J., Pugovkina N., Shatrova A., Aksenov N., Tyuryaeva I., Kirpichnikova K., Kuneev I., Zhuravlev A., Osyaeva E., Lyublinskaya E., Gazizova I., Guriev N., Lyublinskaya O. 2022. Resistance to H2O2-induced oxidative stress in human cells of different phenotypes. Redox Biol. V. 50: 102245.
  24. Zheng M., Åslund F., Storz G. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science. V. 279. P. 171 https://doi.org/10.1007/s10561-022-10011-x

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of experiment on HyPer biosensor calibration in living cells using exogenous H2O2. Designations: gradient is the ratio of extracellular concentration of H2O2 ([H2O2]ex) to intracellular concentration ([H2O2]in); kPXi is the rate constant of elimination of H2O2 by intracellular peroxidases: peroxyredoxins (Prx), glutathione peroxidases (GPx), catalase (Cat), c1; kperm is the rate constant of penetration of H2O2 into the cell, c1; HyPer ratio is the ratiometric biosensor signal, the ratio of HyPer fluorescence signals at two different excitation wavelengths: 488 nm (I488) and 405 nm (I405).

Жүктеу (252KB)
3. 2. Experimental scheme for determining the intracellular concentration of H2O2 ([H2O2]in) during the induction of external oxidative stress. The left panel shows the measurement scheme, flow cytometric analysis of cells. The right panel shows the processing of experimental data, an example of a kinetic curve (black) and the approximation of this curve by kinetic equation (4) (red curve). Designations: I488 and I405 are HyPer fluorescence signals at excitation wavelengths of 488 and 405 nm, respectively; OxD (oxidation degree) is the ratio of the number of oxidized HyPer molecules to their total number in the cell; kox is the rate constant of the second—order reaction between HyPer and H2O2, c1.

Жүктеу (272KB)

© Russian Academy of Sciences, 2024