Effect of crystallographic orientation on the phase transition of a finite TiNi shape memory alloy wafer.
- Autores: Pavlov A.I.1, Kartsev A.I.2,3, Koledov V.V.4, Lega P.V.2,4
- 
							Afiliações: 
							- Bauman Moscow State Technical University
- RUDN University
- Computational Center of Far East branch Russian Academy of Sciences
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
 
- Edição: Volume 68, Nº 10 (2023)
- Páginas: 1035-1039
- Seção: PHYSICAL PROCESSES IN ELECTRONIC DEVICES
- URL: https://rjpbr.com/0033-8494/article/view/650456
- DOI: https://doi.org/10.31857/S0033849423100133
- EDN: https://elibrary.ru/DOCWBT
- ID: 650456
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A simulation of a TiNi shape memory alloy plate was carried out at various crystallographic orientations using a free package for classical molecular dynamics LAMMPS. It was found that the crystallographic orientation of the plate has a significant effect on the phase transition temperature. The dependence of surface energy on temperature for crystallographic orientations (100), (110), (112), (122) was constructed. The stability of the model used was investigated, as a result of which its applicability in these calculations was confirmed.
Palavras-chave
Sobre autores
A. Pavlov
Bauman Moscow State Technical University
														Email: Alex.pav.2001@yandex.ru
				                					                																			                												                								Moscow, 105005, Russia						
A. Kartsev
RUDN University; Computational Center of Far East branch Russian Academy of Sciences
														Email: Alex.pav.2001@yandex.ru
				                					                																			                												                								Moscow, 117198, Russia; Khabarovsk, 680000, Russia						
V. Koledov
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
														Email: Alex.pav.2001@yandex.ru
				                					                																			                												                								Moscow, 125009 Russia						
P. Lega
RUDN University; Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: Alex.pav.2001@yandex.ru
				                					                																			                												                								Moscow, 117198, Russia; Moscow, 125009 Russia						
Bibliografia
- Трусов С.Н., Чернявские А.Г. // ЖТФ. 1996. Т. 66. № 11. С. 153.
- Лохов В.А., Кучумов А.Г. // Рос. журн. биомеханики. 2006. № 3. С. 41.
- Aviram A., Ratner M.A. // Chem. Phys. Lett. 1974. V. 29. № 2. P. 277.
- Chernozatonskii L.A., Kosakovskaja Z.J., Fedorov E.A., Panov V.I. // Phys. Lett. A. 1995. V. 197. № 1. P. 40.
- Антропов А.П., Зайцев Н.К., Рябков Е.Д. и др. // Тонкие химические технологин. 2021. Т. 16. № 2. С. 105.
- Franklin A.D., Luisier M., Han S.J. et al. // Nano Lett. 2012. V. 12. № 2. P. 758.
- Hills G., Lau C., Wright A. et al. // Nature. 2019. V. 572. № 7771. P. 595.
- Zhang Y.L., Li J., To S. et al. // Nanotechnology. 2012. V. 23. P. 1063.
- Budhia H., Kreith F. // Int. J. Heat Mass Transf. 1973. V. 16. № 1. P. 195.
- Chang J., Sakai T., Saka H. // Philos. Magazine Lett. 2005. V. 85. № 5. P. 247.
- Ko W.S., Grabowski B., Neugebauer J. // Phys. Rev. B. 2015. V. 92. № 13. Article No. 134107.
- Kartsev A.I., Lega P.V., Orlov A.P. et al. // Nanomaterials. 2022. V. 12. P. 1107.
- Nosé S. // J. Chem. Phys. 1984. V. 81. № 1. P. 511.
- Hoover W.G. // Phys. Rev. A. 1985. V. 31. № 3. P. 1695.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 









