Design of a bio-inspired spiking neuron based on nanoscale Josephson contacts with a gold wire in the weak link region

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of an experimental study of new technological solutions for the creation of basic elements in compact bio-inspired spiking neurons are presented: we are talking about nanoscale Josephson contacts with a gold wire in the field of weak communication. The design of the neuron as a whole has been found, for which the low capacitance of nanoscale contacts, which was previously one of the main limitations in practical implementation, is no longer a problem. The operability of the proposed circuit solution is confirmed by numerical modeling. On this basis, the topologies of the bio-inspired neuron were developed. The results obtained open new possibilities for the creation of high-performance and energy-efficient neural networks, which can have a significant impact on the development of artificial intelligence and quantum technologies.

Full Text

Restricted Access

About the authors

G. I. Gubochkin

Lomonosov Moscow State University

Email: nvklenov@mail.ru

Faculty of Physics, Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Russian Federation, Leninskie gory 1, bld. 2, Moscow

A. A. Elistratova

Moscow Institute of Physics and Technology (National Research University); Dukhov Automatic Research Institute (VNIIA)

Email: nvklenov@mail.ru
Russian Federation, Institutsky Lane, 9, Dolgoprudny, Moscow Region, 141700; 22 Sushchevskaya Str., Moscow, 127030

A. G. Shishkin

Moscow Institute of Physics and Technology (National Research University)

Email: nvklenov@mail.ru
Russian Federation, Institutsky Lane, 9, Dolgoprudny, Moscow Region, 141700

M. S. Sidelnikov

Moscow Institute of Physics and Technology (National Research University)

Email: nvklenov@mail.ru
Russian Federation, Institutsky Lane, 9, Dolgoprudny, Moscow Region, 141700

N. V. Klenov

Lomonosov Moscow State University

Author for correspondence.
Email: nvklenov@mail.ru

Faculty of Physics, Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Russian Federation, Leninskie gory 1, bld. 2, Moscow

V. S. Stolyarov

Moscow Institute of Physics and Technology (National Research University); Dukhov Automatic Research Institute (VNIIA)

Email: nvklenov@mail.ru
Russian Federation, Institutsky Lane, 9, Dolgoprudny, Moscow Region, 141700; 22 Sushchevskaya Str., Moscow, 127030

References

  1. Ponulak F., Kasinski A. // Acta Neurobiologiae Experimentalis. 2011. V. 71. № 4. P. 409. http://doi.org/10.55782/ane-2011-1862
  2. Berggren K., Xia Q. Likharev K.K. et al. // Nanotechnology. 2021. V. 32. № 1. P. 012002. http://doi.org/10.1088/1361-6528/aba70f
  3. Giazotto F., Peltonen J., Meschke M., Pekola J. // Nature Physics. 2010. V. 6. P. 254. http://doi.org/10.1038/nphys1721
  4. Vasenko A.S., Kawabata S., Golubov A.A. et al. // Phys. Rev. B. 2011. V. 84. № 2. P. 024524. http://link.aps.org/doi/10.1103/PhysRevB.84.024524
  5. Tolpygo S., Bolkhovsky V., Rastogi R. et al. // IEEE Trans. 2019. V. AP-29. № 5. Pt. 1. Article No.110251.https://doi.org/10.1109/TASC.2019.2904919
  6. Soloviev I.I., Bakurskiy S.V., Ruzhickiy V.I. et al. // Phys. Rev. Appl. 2021. V. 16. № 4. P. 044060. http://dx.doi.org/10.1103/PhysRevApplied.16.044060
  7. Ruf L., Elalaily T., Puglia C. et al. // APL Materials. 2023. V. 11. № 9. P. 091113. https://doi.org/10.1063/5.0172714
  8. Skryabina O.V., Bakurskiy S.V., Shishkin A.G. et al. // Sci. Rep. 2021. V. 11. P. 15274. https://doi.org/10.1038/s41598-021-94720-5
  9. Cuevas J., Bergeret F. // Phys. Rev. Lett. 2007. V. 99. № 21. P. 217002. https://doi.org/10.1103/PhysRevLett.99.217002
  10. Rodrigo J.G., Suderow H., Vieira S. // Phys. Stat. Sol. (b). 2003. V. 237. № 1. P. 386. https://doi.org/10.1002/pssb.200301798
  11. Skryabina O.V., Schegolev A.E., Klenov N.V. et al. // Nanomaterials. 2022. V. 12. P. 1671. https://doi.org/10.3390/nano12101671
  12. Schegolev A.E., Klenov N.V., Gubochkin G.I et al. // Nanomaterials. 2023. V. 13. № 10. P. 2101. https://doi.org/10.3390/nano13142101
  13. Crotty P., Schult D., Segall K. // Phys. Rev. E. 2010. V. 82. № 1. Article No. 011914. https://doi.org/10.1103/PhysRevE.82.011914
  14. Toomey E., Segall K., Castellani M. et al. // Nano Lett. 2020. V. 20. № 11. P. 8059. https://doi.org/10.48550/arXiv.2007.15101
  15. Crotty P., Segall K., Schult D. // IEEE Trans. 2023. V. AP-33. № 4. Article No. 1800806. https://doi.org/10.1109/TASC.2023.3242901
  16. Delport J., Jackman K., Roux P., Fourie C. // IEEE Trans. 2019. V. AP-29. № 5. Pt. 1. Article No. 1300905. https://doi.org/10.1109/TASC.2019.2897312
  17. Khapaev M.M., Kidiyarova-Shevchenko A.Yu., Magnelind P., Kupriyanov M.Yu. // IEEE Trans. 2001. V. AP-11. № 1. P. 1090. http://doi.org/10.1109/77.919537
  18. Karamuftuoglu M.A., Bozbey A., Razmkhah S. // IEEE Trans. 2023. V. AP-33. № 8. Article No. 1400607. https://doi.org/10.1109/TASC.2023.3270766
  19. Zhu G., Kan Y., Zhang R. et al. // Supercond. Sci. Technol. 2024. V. 37. № 9. Article No. 095022. http://doi.org/10.1088/1361-6668/ad6d9e
  20. Yamauchi T., Takeuchi N., Yoshikawa N. et al. // Supercond. Sci. Technol. 2024. V. 37. № 9. Article No. 095027. http://doi.org/10.1088/1361-6668/ad55ce
  21. Pashin D.S., Bastrakova M.V., Rybin D.A. et al. // Nanomaterials. 2024. V. 14. № 10. P. 854. http://dx.doi.org/10.3390/nano14100854

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Josephson contact: (a) – three-dimensional model; (b) – colored photographs of contacts taken with a scanning electron microscope perpendicularly and at an angle to the plane of the chip.

Download (324KB)
3. Fig. 2. Measurements at the base temperature T = 200 mK: (a) – current-voltage characteristic of the SNS contact (electrode width W = 750 nm, distance between them L = 230 nm); (b) – dependence of the critical current density of the samples on the length L of the gold wire at W = 500 nm (triangles) and 750 nm (diamonds).

Download (84KB)
4. Fig. 3. Change in the volt-ampere characteristics of the samples with an increase in the magnetic induction of the applied field: 12 mT – dark solid curve, 31 mT – dashed curve, 49 mT – dotted curve, 87 mT – light solid curve.

Download (81KB)
5. Fig. 4. Temperature dependences: (a) – critical current of three SNS contacts (L = 105 nm, W = 750 nm – solid curve, L = 230 nm, W = 750 nm – curve of dots, L = 160 nm, W = 500 nm – dashed curve). At TC SNS = 6 K, a complete transition to normal conductivity through the Au strip occurs; (b) – resistance of the SNS contact (W = 500 nm, L = 160 nm) at a current of I = 10 μA. The dots correspond to the experimental data, the solid curve – to expression (1).

Download (86KB)
6. Fig. 5. Equivalent circuit of a 3JJ neuron [11, 12], in which Josephson contacts are marked with crosses and flowing currents are marked with arrows.

Download (91KB)
7. Fig. 6. Simulation of the 3JJ neuron operation taking into account thermal noise at 0.3 K in the JoSIM software package [16]: (a) – “regular” mode, (b) – “traumatized” mode. Circuit parameters: Ls = 7.12 pH, Ln = 5.87 pH, LSQ = 13.86 pH, Ib = 524 μA, Iin = 173 μA, IC1 = 231 μA, Rn1 = 3.12 Ohm, τ = 5.5 ps, IC2 = 168 μA (a) and IC2 = 258 μA (b), Rn2 = 3.12 Ohm (a) and Rn2 = 4.82 Ohm (b).

Download (134KB)
8. Fig. 7. Triangular mesh created for calculations in the 3D-MLSI program with a step of 0.01 µm on a section of the circuit containing a connection with an LSQ inductor.

Download (164KB)
9. Fig. 8. Design of a 3JJ neuron based on nanoscale Josephson junctions. White dashes schematically show the current spreading obtained on the basis of simulation modeling using the 3D-MLSI package. White squares indicate virtual terminals for delimiting inductance sections in the circuit.

Download (62KB)

Copyright (c) 2025 Russian Academy of Sciences