Synthesis and analysis of ultra-wideband reflectarrays

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article is devoted to the problems of analysis and synthesis of dual-polarization ultra-wideband reflectarrays and is relevant for arrays of UWB elements of extended length such as Vivaldi antennas and TEM-horns. Synthesis and analysis are carried out in the approximation of a locally periodic array, when each of its elements can be assigned a Floquet cell. A review of the literature on UWB reflectarrays is carried out and it is shown that in most published works the dependence of the phase of the Floquet cell transmission coefficient on the angle of incidence and polarization of the exciting wave is not taken into account in the process of synthesis of the array. This article presents a procedure for the approximate synthesis of a dual-polarization UWB reflectarray taking into account the above effects. An approach to the analysis of the UWB RAA is proposed, based on the numerical calculation of the Floquet cell scattering matrix in combination with the successive approximations method. A comparison of the solutions at the first and second iterations is carried out, and the questions of further solution correction by increasing the order of approximation are discussed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Bankov

Kotelnikov Institute of Radioengineering and Electronics RAS

Хат алмасуға жауапты Автор.
Email: sbankov@yandex.ru
Ресей, Mokhovaya Str., 11, build. 7, Moscow, 125009

M. Duplenkova

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: sbankov@yandex.ru
Ресей, Mokhovaya Str., 11, build. 7, Moscow, 125009

Әдебиет тізімі

  1. Dahri M.H., Jamadulin M.H., Abbasi M.I., Kamarudim M.R. // IEEE Access. 2017. V. 5. Article No. 17803.
  2. Narayanasamy K., Mohammed G.N.A., Savarimuthu K. et al. // Int. J. RF and Microwave Computer‐Aided Engineering. 2020. Article No. 22272.
  3. Joy J.A., Palaniswami S.K., Kumar S. et al. // IEEE Access. 2024. V. 12. Article No. 46717.
  4. Банков С.Е., Курушин А.А., Гутцайт Э.М. Решение оптических и СВЧ задач с помощью HFSS. М.: Оркада, 2012. 240 с.
  5. Li W., Gao S., Zhang L. et al. // IEEE Trans. 2018. V-AP. 66. № . 2. P. 533.
  6. Zhang J. Zhang L., Li W. et al. // 2020 14th European Conference on Antennas and Propagation (EuCAP). Copenhagen. 15–20 Mar. N.Y.: IEEE, 2020. Paper No. 9135484.
  7. Hamza M., Zekios C.L., Georgakopoulos S.V. // 2021 IEEE Int. Symp. on A&P and USNC-URSI Radio Science Meeting (APS/URSI). Singapore. 04–10 Dec. N.Y.: IEEE, 2021. P. 977.
  8. Wang J., Zhou Y., Feng X. // 2019 Computing, Communications and IoT Applications (ComComAp). Shenzhen. 28–30 Oct. N.Y.: IEEE, 2019. P. 200.
  9. Xiao L., Qu S.W., Yang S. // Int. J. RF and Microwave Computer‐Aided Engineering. 2021. Article No. 22892.
  10. Qin F., Li L., Liu Y., Zhang H. // The Applied Computational Electromagnetics Society J. (ACES). 2020. V. 35. № 7. P. 784.
  11. Ren J. Wang H., Shi W., Ma M. // IEEE Antennas and Wireless Propagation Lett. 2021. V. 20. № . 12. P. 2496.
  12. Амитей Н., Галиндо В., Ву Ч. Теория и анализ фазированных антенных решеток. М.: Мир. 1974.
  13. Калошин В.А., Ле Н.Т. // Докл. VI Всерос. Микроволновой конф. Москва 28–30 Нояб. 2018. М.: ИРЭ им. В. А. Котельникова РАН, 2018. C. 194.
  14. Yan J.B., Gogineni S., Camps-Raga B., Brozena J. // IEEE Trans. 2015. V. AP-64. № 2. P. 781.
  15. Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн. М.: Радио и связь, 1983.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Ray path in a reflective grating.

Жүктеу (60KB)
3. Fig. 2. Local and global coordinate systems for the OAR synthesis procedure.

Жүктеу (72KB)
4. Fig. 3. Schematic representation of the Floquet channel for the OAR EY.

Жүктеу (59KB)
5. Fig. 4. The structure under study: (a) – fragment of the lattice, (b) – electrodynamic model of the lattice in the form of a Floquet channel.

Жүктеу (301KB)
6. Fig. 5. Frequency dependence of the reflection coefficient of the Floquet channel for different angles of incidence, θ = 0° (1), 15° (2), 30° (3).

Жүктеу (215KB)
7. Fig. 6. Dependence of the phase of the Floquet channel transmission coefficients Ф1, f1 (1) and Ф2, f2 (2) on the angle of incidence θ at φ = 0.

Жүктеу (118KB)
8. Fig. 7. Lengths of the LZ depending on the coordinate xа at ya = 0 L1 (1, 3, 5) and L2 (2, 4, 6) at F = 200 (1, 2), F = 300 (3, 4), F = 400 (5, 6) for the cases: ΔX = 0, β = 0 (a); ΔX = –100, β = 30° (b).

Жүктеу (325KB)
9. Fig. 8. Difference in phase shifts in L1 and L2 LZs depending on the EY coordinates at ya = 0; (a) – at F = 200 (1, 4), F = 300 (2, 5), F = 400 (3, 6) for the case (ΔX = 0, β = 0) – 1, 2, 3; (ΔX = –100, β = 30°) – 4, 5, 6; (b) – at F = 300 (β = 0, ΔX = –200) (1), (β = 0, ΔX = –100) (2), (β = 0, ΔX = 0) (3), (β = 15°, ΔX = 0) (4), (β = 30°, ΔX = 0) (5).

Жүктеу (255KB)
10. Fig. 9. The principle of wave formation in the ports of the IE at the stage of analysis in zero approximation: (a) – incident wave E1 in port 1, (b) – reflected wave Ef1 in port f1.

Жүктеу (115KB)
11. Fig. 10. The principle of formation of the reflected wave E ’f 1 in the port f1.

Жүктеу (69KB)
12. Fig. 11. Dependences of radiation angles θ out (1), φ out (2) on xn at yn = 45 for OAR with F = 200 mm, ∆Х = –100 mm, β = 30° at frequencies of 7 GHz (a), 15 GHz (b), 27 GHz (c).

Жүктеу (170KB)
13. Fig. 12. DN in the first (3, 4) and zero (1, 2) approximations for the main (1, 3) and cross-polarizations (2, 4).

Жүктеу (175KB)
14. Fig. 13. RP for horizontal (a, c) and vertical (b, d) polarization as a function of angle at frequencies of 11 GHz (a, b) and 19 GHz (c, d): D(θ) – 1, D(φ) – 2.

Жүктеу (295KB)
15. Fig. 14. Frequency dependences of the coefficient of heat transfer taking into account (1, 2, 3) and without taking into account (4, 5, 6) heat losses for β = 10° (1, 4), 20° (2, 5), 30° (3, 6).

Жүктеу (161KB)
16. Fig. 15. Frequency dependences of the control and measurement parameters for β = 10° (1), 20° (2), 30° (3).

Жүктеу (97KB)

© Russian Academy of Sciences, 2025