The influence of nonlinearity on a singular point in a system of coupled Duffing oscillators
- Autores: Temnaya O.S.1, Safin A.R.1,2, Kravchenko O.V.1,3, Nikitov S.A.1,3,4
- 
							Afiliações: 
							- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
- Moscow Power Engineering Institute (National research University)
- Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS
- Saratov State University (National research University
 
- Edição: Volume 68, Nº 9 (2023)
- Páginas: 893-896
- Seção: К 70-ЛЕТИЮ ИРЭ ИМ. В.А. КОТЕЛЬНИКОВА РАН
- URL: https://rjpbr.com/0033-8494/article/view/650472
- DOI: https://doi.org/10.31857/S0033849423090231
- EDN: https://elibrary.ru/SJESLH
- ID: 650472
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The influence of nonlinearity on the displacement of a singular point in a system of two connected Duffing oscillators when coupling coefficients and insertion losses change. It is shown that the displacement of the singular point when the nonlinearity coefficient changes is accompanied by a decrease in the amplitude of the excited oscillations and a shift in the resonant frequency. The threshold values of the nonlinearity, coupling, and insertion loss coefficients at which a singular point occurs are numerically found. It is shown that an increase in the nonlinearity coefficient leads to a decrease in the threshold value of the insertion losses required for the formation of a singular point.
Sobre autores
O. Temnaya
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
														Email: ostemnaya@gmail.com
				                					                																			                												                								Moscow, 125009 Russia						
A. Safin
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Moscow Power Engineering Institute (National research University)
														Email: ostemnaya@gmail.com
				                					                																			                												                								Moscow, 125009 Russia; Moscow, 111250, Russia						
O. Kravchenko
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS
														Email: ostemnaya@gmail.com
				                					                																			                												                								Moscow, 125009 Russia; Moscow,119333, Russia						
S. Nikitov
Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS; Saratov State University (National research University
							Autor responsável pela correspondência
							Email: ostemnaya@gmail.com
				                					                																			                												                								Moscow, 125009 Russia;  Dolgoprudnyi, Moscow oblast, 141701 Russia; Saratov, 410012, Russia						
Bibliografia
- Kato T. A Short Introduction to Perturbation Theory for Linear Operators. N.Y.: Springer., 2011. https://doi.org/10.1007/978-1-4612-5700-4
- Wiersig J. // Photon. Res. 2020. V. 8. № 9. P. 1457. https://doi.org/10.1364/PRJ.396115
- Weidong C., Wang C., Chen W. et al. // Nat. Nanotech. 2022. V. 17. Article No. 262268. https://doi.org/10.1038/s41565-021-01038-4
- Зябловский А.А., Виноградов А.П., Пухов А.А. и др. // Успехи физ. наук. 2014. Т. 184. № 11. С. 1177. https://doi.org/10.3367/UFNr.0184.201411b.1177
- Rüter C., Makris K., El-Ganainy R. // Nat. Phys. 2010. V. 6. Article No. 192195. https://doi.org/10.1038/nphys1515
- Вилков Е.A., Бышевский-Конопко О.А., Темная О.С. и др. // Письма в ЖТФ. 2022. Т. 48. № 24. С. 38. https://doi.org/10.21883/PJTF.2022.24.54023.19291
- Zhu X., Ramezani H., Shi C. et al. // Phys. Rev. X 2014. V. 4. Article No. 031042. https://doi.org/10.1103/PhysRevX.4.031042
- Wittrock S., Perna S., Lebrun R. et al. // arXiv: 2108.04804.
- Liu H., Sun D., Zhang C. et al. // Sci. Adv. 2019. V. 5. № 11. Article No. aax9144. https://doi.org/10.1126/sciadv.aax9144
- Temnaya O.S., Safin A.R., Kalyabin D.V., Nikitov S.A. // Phys. Rev. Appl. 2022. V. 18. Article No. 014003. https://doi.org/10.1103/PhysRevApplied.18.014003
- Sadovnikov A.V., Zyablovsky A.A., Dorofeenko A.V., Nikitov S.A. // Phys. Rev. Appl. 2022. V. 18. Article No. 024073. https://doi.org/10.1103/PhysRevApplied.18.024073
- Rajasekar S., Sanjuan M. Nonlinear Resonances. Cham: Springer, 2015.
- Рабинович И.М., Трубецков Д.И. Введение в теорию колебаний и волн. Ижевск: НИЦ РХД, 2000.
- Moon K.-W., Chun B.S., Kim W. et al. // Sci. Reports. 2014. V. 4. Article No. 6170.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



