Ионные жидкости для смазочных материалов: обзор современного состояния

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Статья посвящена возможностям использования ионных жидкостей (ИЖ) различного строения в качестве смазочных материалов или функциональных присадок к ним. ИЖ — расплавы солей, в которых анионы и катионы находятся в равновесном состоянии — благодаря своим свойствам получили широкое распространение в таких областях, как биотехнология, энергетика и “зеленая” химия. В обзоре описаны физико-химические свойства ИЖ, способы и методы их получения и применения, рассмотрен механизм их действия, вопросы взаимодействия с другими присадками к смазочным материалам, стоимость, а также будущие возможности развития. Как результат, показаны варианты применения ионных жидкостей в качестве перспективных противоизносных присадок к смазочным материалам.

Full Text

Restricted Access

About the authors

Никита Александрович Семенов

Российский государственный университет нефти и газа (НИУ) имени И. М. Губкина

Email: peskovets.a@gubkin.ru
ORCID iD: 0009-0003-7078-4779
Russian Federation, 119991, Москва

Анна Витальевна Песковец

Российский государственный университет нефти и газа (НИУ) имени И. М. Губкина

Author for correspondence.
Email: peskovets.a@gubkin.ru
ORCID iD: 0009-0005-2191-392X

к. т. н.

Russian Federation, 119991, Москва

Николай Алексеевич Пугачев

Российский государственный университет нефти и газа (НИУ) имени И. М. Губкина

Email: peskovets.a@gubkin.ru
ORCID iD: 0009-0003-9882-1818
Russian Federation, 119991, Москва

Леонид Николаевич Багдасаров

Российский государственный университет нефти и газа (НИУ) имени И. М. Губкина

Email: peskovets.a@gubkin.ru
ORCID iD: 0009-0001-8344-5237

к. т. н., доцент

Russian Federation, 119991, Москва

Борис Петрович Тонконогов

Российский государственный университет нефти и газа (НИУ) имени И. М. Губкина

Email: peskovets.a@gubkin.ru
ORCID iD: 0000-0003-1141-0120

д. х. н., проф.

Russian Federation, 119991, Москва

References

  1. Cai M., Yu Q., Liu W., Zhou F. Ionic liquid lubricants: when chemistry meets tribology // Chemical Society Reviews. 2020. V. 49. № 21. P. 7753–7818. https://doi.org/10.1039/D0CS00126K
  2. Rudnick L.R. In: Lubricant Additives Chemistry and Applications, Third Edition. CRC Press, 2022. P. 133–135
  3. Egorova K.S., Gordeev E.G., Ananikov V.P., Biological activity ofionic liquids and their application in pharmaceutics and medicine // Chem. Reviews. 2017. V. 117. № 10. P. 7132–7189. https://doi.org/10.1021/acs.chemrev.6b00562
  4. Waheed S., Ahmed A., Abid M., Mufti R.A., Ferreira F., Bashir M.N., Shah A.U.R., Jafry A.T., Zulki N.W. Ionic liquids as lubricants: An overview of recent developments // J. of Molecular Structure. 2024. V. 1301. № 21. ID137307. https://doi.org/10.1016/j.molstruc.2023.137307
  5. Zhou Y., Qu J. Ionic liquids as lubricant additives: A Review // ACS Applied Materials and Interfaces. 2017. V. 9. № 4. P. 3209–3222. https://doi.org/10.1021/acsami.6b12489
  6. Hough W.L., Smiglak M., Rodríguez H., Swatloski R.P., Spear S.K., Daly D.T., Pernak J., Grisel J.E., Carliss R.D., Soutullo M.D., Davis J.H. Jr., Rogers R.D. The third evolution of ionic liquids: active pharmaceutical ingredients // New J. of Chemistry. 2007. V. 31. № 8. P. 1429–1436. https://doi.org/10.1039/B706677P
  7. Plechkova N.V., Seddon K.R. Applications of ionic liquids in the chemical industry // Chem. Society Reviews. 2008. V. 37. № 1. P. 123–150. https://doi.org/10.1039/B006677J
  8. Белов А.В. Термодинамические характеристики растворения и ионной ассоциации трех ионных жидкостей в ацетонитриле, изопропаноле и их смесях с водой // Дисс. … к. х. н. Москва, РХТУ им. Менделеева, 2015. 81 с.
  9. Berthod A., Ruiz-Ángel M.J., Carda-Broch S. Recent advances on ionic liquid uses in separation techniques // J. of Chromatography A. 2018. V. 1559. P. 2–16. https://doi.org/10.1016/j.chroma.2017.09.044
  10. Справочник ионных жидкостей. https://ilthermo.boulder.nist.gov/ (дата обращения: 12.09.2024).
  11. Wilkes J.S. Properties of ionic liquid solvents for catalysis // J. of Mol. Catalysis A: Chemical. 2004. V. 214. № 1. P. 11–17. https://doi.org/10.1016/j.molcata.2003.11.029
  12. Crosthwaite J.M., Muldoon M.J., Dixon J.N.K., Anderson J.L., Brennecke J.F. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids // J. of Chemical Thermodynamics. 2005. V. 37. № 6. P. 559–568. https://doi.org/10.1016/j.jct.2005.03.013
  13. Weingartner H. Understanding ionic liquids at the molecular level: facts, problems, and controversies // Angewandte Chemie Int. Edition. 2008. V. 47 № 4. P. 654–670. https://doi.org/10.1002/anie.200604951
  14. Liu M., Jing Ni J., Zhang C., Wang R., Cheng Q., Liang W., Liu Z. The application of ionic liquids in the lubrication field: their design, mechanisms, and behaviors // Lubricants. 2024. V. 12. № 1. Р. 24. https://doi.org/10.3390/lubricants12010024
  15. Семенов Н.А., Пугачев Н.А., Песковец А.В., Тонконогов Б.П. Опыт использования ионных жидкостей в качестве противоизносных присадок для полиалкиленгликолей // Материалы конференции “XV Международная научно-техническая конференция ТРИБОЛОГИЯ — МАШИНОСТРОЕНИЮ 2024”. Москва, 2024
  16. Qu J., Luo H., Toops T.J., West B.H., Blau P.J., Dai S., Papke B.L., Kheireddin B., Gao H. Ionic liquids as multi-functional lubricant additives to enhance engine efficiency // Crada Final Report, OAK ridge national laboratory, 2016.
  17. Chen Y., Han X., Liu Z., Li Y., Sun H., Wang H., Wang J. Thermal decomposition and volatility of ionic liquids: Factors, evaluation and strategies // J. of Molecular Liquids. 2022. V. 366. ID120336. https://doi.org/10.1016/j.molliq.2022.120336
  18. Chen Y., Mu T. Thermal stability of ionic liquids. In: Zhang S. (eds) Encyclopedia of ionic liquids. Springer, Singapore, 2020. P. 1–13. https://doi.org/10.1007/978-981-10-6739-6_103-1
  19. Maton C., de Vos N., Stevens C. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools // Chem. Soc. Reviews. 2013. V. 42. № 13. P. 5963–5977. https://doi.org/10.1039/C3CS60071H
  20. Siedlecka E., Czerwicka M., Stolte S., Stepnowski P. Stability of ionic liquids in application conditions // Current Organic Chemistry. 2011. V. 15. № 12. P. 1974–1991. http://doi.org/10.2174/138527211795703630
  21. Monge R., Gonzalez R., Hernandez Battez A., Fernandez-Gonzalez A., Viesca J.L., Garcia A., Hadfield M. Ionic Liquids as an additive in fully formulated wind turbine gearbox oils // Wear. 2015. V. 328–329. № 61. P. 50–63. https://doi.org/10.1016/j.wear.2015.01.041
  22. Sharma V., Gabler C., Doerr N., Aswath P.B. Mechanism of tribofilm formation with P and S containing ionic liquids // Tribology International. 2015. V. 92. P. 353–364. https://doi.org/10.1016/j.triboint.2015.07.009
  23. González R., Bartolomé M., Blanco D., Viesca J.L., Fernández-González A., Battez A.H. Effectiveness of phosphonium cation-based ionic liquids as lubricant additive // Tribology International. 2016. V. 98. P. 82–93. https://doi.org/10.1016/j.triboint.2016.02.016
  24. Qiao D., Wang H.Z., Feng D.P. Tribological performance and mechanism of phosphate ionic liquids as additives in three base oils for steel-on-aluminum contact // Tribology Letters. 2014. V. 55. P. 517–531. https://doi.org/10.1007/s11249-014-0377-1
  25. Cao Y., Mu T. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis // Industrial and Engineering Chemistry Research. 2014. V. 53. P. 8651–8664. https://doi.org/10.1021/ie5009597.s001
  26. Nasirpour N., Mohammadpourfard M., Herisa S.Z. Ionic liquids: promising compounds for sustainable chemical processes and applications // Chemical Engineering Research and Design. 2020. V. 160. P. 264–300. https://doi.org/10.1016/j.cherd.2020.06.006
  27. Armstrong J.P., Hurst C., Jones R.G., Licence P., Lovelock K., Satterley C., Villar-Garcia I. Vapourisation of ionic liquids // Phys. Chem. Chem. Phys. 2007. V. 9. № 8. P. 982–990. https://doi.org/10.1039/B615137J
  28. Цивадзе А.Ю. Ионные жидкости: теория и практика (Проблемы химии растворов). Иваново, АО “Ивановский издательский дом”, 2019. С. 22–56.
  29. Yang S., Shi Y., Zuo X., Zhang X. Tribological properties of the P and S-free protic ionic liquids as water-based lubricants // J. of Molecular Liquid. 2024. V. 414. ID126101. https://doi.org/10.1016/j.molliq.2024.126101
  30. Zhou J., Sui H., Jia Z., Yang Z., He L., Li X. Recovery and purification of ionic liquids from solutions: a review // RSC Advances. 2018. V. 8. № 57. P. 32832–32864. https://doi.org/10.1039/C8RA06384B
  31. Mark B. Shiflett. Commercial Applications of Ionic Liquids. Springer Nature Switzerland AG, 2020. 288 p.
  32. Qu J., He X., Luo H., Sulejmanovic D., Ivanov A., Akram W., Morgan H. Leehey, Kujak S. Ionic Liquids as Novel Lubricant Additives for HVAC Compressors for Enhanced Efficiency and Durability. Presentation, Oak Ridge National Laboratory, 2023.
  33. Ionic liquids — innovative lightning conductor in e-mobility. https://www.klueber.com/us/en/company/ newsroomnews/ionic-liquids-innovative-lightning-conductor-in-e-mobility/ (дата обращения 13.09.2024).
  34. Liu M., Jing Ni J., Zhang C., Wang R., Cheng Q., Liang W., Liu Z. The application of ionic liquids in the lubrication field: their design, mechanisms, and behaviors // Lubricants. 2024. V. 12. № 1. ID24. https://doi.org/10.3390/lubricants12010024
  35. Zhang C., Li F., Yang Z., Wang X., Chen G., Lu Z., Jia L., Yu O., Cai M. Comparing tribology properties of halogen-free ionic liquid, halogen-containing ionic liquid, and PAO 10 lubricants for steel Al2024 friction contact at room temperature and high temperature // J. of Molecular Liquids. 2021. V. 323. ID115041. https://doi.org/10.1016/j.molliq.2020.115041
  36. Kreivaitis R., Kupčinskas A., Žunda A., Thi Na Ta, Jeng Haur Horng. Effect of temperature on the lubrication ability of two ammonium ionic liquids // Wear. 2022. V. 492–493. https://doi.org/10.1016/j.wear.2021.204217
  37. Sernaglia M., Blanco D., Hernández Battez A., Viesca J. L., González R., Bartolomé M. Two fatty acid anion-based ionic liquids — part I: Physicochemical properties and tribological behavior as neat lubricants // J. of Molecular Liquids. 2020. V. 305. № 3. ID112827. https://doi.org/10.1016/j.molliq.2020.112827
  38. Sun Y., Qiu X., Liu Y., Sun S., Zhang C., Wang X., Zhao C., Yu B., Yu O., Cai M., Zhou F., Ahmed Ali M. K. A comparative study of the tribological performance of two oil-soluble ionic liquids as replacements for ZDDP (T204) additives in lubricants // Tribology International. 2024. V. 198. ID109843. https://doi.org/10.1016/j.triboint.2024.109843
  39. Barnhill W. C., Qu J., Luo H., Meyer H. M., Ma C., Chi M., Papke B. L. Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics // ACS Appl. Mater. Interfaces. 2014. V. 6. № 24. P. 22585–22593. https://doi.org/10.1021/am506702u
  40. Chacon-Teran M.A., Moustafa C., Luu J., Martini A., Findlater M. Pyrylium- and pyridinium-based ionic liquids as friction modifiers for greases // ACS Appl. Mater. Interfaces. 2024. V. 16. № 10. P. 13346–13351. https://doi.org/10.1021/acsami.4c01750
  41. Reeves C.J., Kasar A.K., Menezes P.L. Tribological Performance of environmental friendly ionic liquids for High-Temperature Applications // J. of Cleaner Production. 2020. V. 279. № 3. ID123666. https://doi.org/10.1016/j.jclepro.2020.123666
  42. Chen Y., Renner P., Liang H. A review of current understanding in tribochemical reactions involving lubricant additives // Friction. 2023. V. 11. P. 489–512. https://doi.org/10.1007/s40544-022-0637-2
  43. Zhou Y., Leonard D.N., Guo W., Qu J. Understanding tribofilm formation mechanisms in ionic liquid lubrication // Scientific Reports. 2017. V. 8426. ID8426. https://doi.org/10.1038/s41598-017-09029-z
  44. Liu L., Wang L., Sun S., Zhang Y., Zhang C., Zhang Sh. Study on the synergistic lubrication mechanism between sulfur- phosphorus-free ionic liquid-type organic molybdenum and ZDDP // Tribology International. 2024. V. 195. ID109663. https://doi.org/10.1016/j.triboint.2024.109663
  45. Zhou Y., Weber J., Viola M. B., Qu J. Is more always better? Tribofilm evolution and tribological behavior impacted by the concentration of ZDDP, ionic liquid, and ZDDP-Ionic liquid combination // Wear. 2019. V. 432–433. ID202951. https://doi.org/10.1016/j.wear.2019.202951
  46. Zhang Y., Cai T., Shang W., Sun L., Liu D., Tong D., Liu Sh. Environmental friendly polyisobutylene-based ionic liquid containing chelated orthoborate as lubricant additive: Synthesis, tribological properties and synergistic interactions with ZDDP in hydrocarbon oils // Tribology International. 2017. V. 115. P. 297–306. https://doi.org/10.1016/j.triboint.2017.05.038
  47. Pandey P., Somers A.E., Hait S.K., Forsyth M., Ramakumar S.S.V. Study of phosphonium based ionic liquid/dispersant additive interactions using spectroscopic technique for lubricant applications // J. of Molecular Liquids. 2021. V. 338. ID116665. https://doi.org/10.1016/j.molliq.2021.116665
  48. Лазарев Г.Б., Самородов Ю. Н. Эрозионные повреждения подшипников турбогенераторов и мощных электродвигателей // Энергия единой сети. 2017. № 5(34). С. 44–60.
  49. Lubricants and hydraulic fluids, air conditioning, hydrogen storage, chemical production processes. https://proionic.com/ionic-liquids/applications-further-applications.php (дата обращения 16.09.2024).
  50. Groff D., George A., Sun N., Sathitsuksanoh N., Bokinsky G., Simmons B.A., Holmes B. M., Keasling J. D. Acid enhanced ionic liquid pretreatment of biomass // Green Chemistry. 2013. V. 15. № 5. P. 1264–1267. https://doi.org/10.1039/C3GC37086K
  51. Chen L., Sharifzadeh M., Mac Dowell N., Welton T., Shah N., Hallett J. P. Inexpensive ionic liquids: [HSO4]– — based solvent production at bulk scale // Green Chemistry. 2014. V. 16. № 6. P. 3098–3106. https://doi.org/10.1039/C4GC00016A
  52. Product catalog of Macklin company https://www.macklin.cn/ (дата обращения 19.09.2024).
  53. Product catalog of Sigma Aldrich company https://www.sigmaaldrich.com/ (дата обращения 19.09.2024).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of typical cations and anions (according to [3]).

Download (189KB)
3. Fig. 2. General block diagram of IL production (according to [29]).

Download (108KB)
4. Fig. 3. Dicationic alkylammonium ionic liquid with different anions (by [38]).

Download (49KB)
5. Fig. 4. Dependence of solubility (a) and density (b) of phosphonium ILs on the structure of alkyl substituents (by [39]).

Download (171KB)
6. Fig. 5. Antifriction properties of ILs and other lubricants with different environmental effects (according to [41]).

Download (187KB)
7. Fig. 6. Mechanism of tribofilm formation (by [43]): 1 - tribofilm initiation through direct surface reactions to form an oxide intermediate layer, mainly made of iron oxide; 2 - formation of wear products by (2a) collisions with irregularities, followed by (2b) fracture by grinding process; 3 - tribofilm growth by (3a) mechanical deposition, (3b) chemical deposition and (3c) oxygen diffusion.

Download (284KB)

Copyright (c) 2024 Russian Academy of Sciences