Использование прямого электрического нагрева в химических процессах (обзор)
- Authors: Кузнецов П.С.1, Дементьев К.И.1, Паланкоев Т.А.1, Максимов А.Л.1
-
Affiliations:
- Институт нефтехимического синтеза им. А. В. Топчиева РАН
- Issue: Vol 64, No 5 (2024)
- Pages: 415–432
- Section: Articles
- URL: https://rjpbr.com/0028-2421/article/view/677407
- DOI: https://doi.org/10.31857/S0028242124050014
- EDN: https://elibrary.ru/MVJOSJ
- ID: 677407
Cite item
Abstract
В обзоре проведен анализ существующих концепций использования электроэнергии для нагрева химических реакторов, прежде всего применяемых для проведения гетерогенно-каталитических процессов. Кратко рассмотрены основные способы использования электронагрева в химических реакциях, приведены примеры внедрения электронагрева на промышленном уровне, а также дана оценка перспектив перехода промышленности с традиционных систем нагрева на электрические.
Full Text

About the authors
Петр Сергеевич Кузнецов
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Author for correspondence.
Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0002-3140-3035
к. х. н.
Russian Federation, 119991, МоскваКонстантин Игоревич Дементьев
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0002-8102-8624
к. х. н.
Russian Federation, 119991, МоскваТимур Ахметович Паланкоев
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0001-9880-6755
к. х. н.
Russian Federation, 119991, МоскваАнтон Львович Максимов
Институт нефтехимического синтеза им. А. В. Топчиева РАН
Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0001-9297-4950
д. х. н., чл.- корр. РАН
Russian Federation, 119991, МоскваReferences
- URL: https://www.eia.gov/energyexplained/use-of-energy/industry.php / сайт американской статистики и анализа “U. S. Energy Information Administration” (дата обращения 28.03.2023).
- Jeffry L., Ong M.Y., Nomanbhay S., Mofijur M., Mubashir M., Show P.L. Greenhouse gases utilization: a review // Fuel. 2021. V. 301. ID121017. https://doi.org/10.1016/j.fuel.2021.121017
- Tanha Z.M., B.N., Baghmisheh G., Younesi H. Greenhouse gas emission estimation of flaring in a gas processing plant: technique development // Process Saf. Environ. Prot. 2019. V. 123. P. 289–298. https://doi.org/10.1016/j.psep.2019.01.008
- Harrison K. The political economy of British Columbia’s carbon tax // OECD Environment Working Papers. 2013. № 63. P. 1–22. https://doi.org/10.1787/5k3z04gkkhkg-en
- URL: https://taxation-customs.ec.europa.eu/green-taxation-0/carbon-border-adjustment-mechanism_en / сайт Европейской комиссии “Carbon Border Adjustment Mechanism” (дата обращения 25.12.2023).
- Bloess A., Schill W.P., Zerrahn A. Power-to-heat for renewable energy integration: a review of technologies, modeling approaches, and flexibility potentials // Appl. Energy. 2018. V. 212. P. 1611–1626. https://doi.org/10.1016/j.apenergy.2017.12.073
- Sandaka B.P., Kumar J. Alternative vehicular fuels for environmental decarbonization: a critical review of challenges in using electricity, hydrogen, and biofuels as a sustainable vehicular fuel // Chem. Eng. J. Adv. 2023. V. 14. ID100442. https://doi.org/10.1016/j.ceja.2022.100442
- Foit S.R., Vinke I.C., de Haart L.G.J., Eichel R.A. Power-to-syngas: an enabling technology for the transition of the energy system? // Angew. Chem., Int. Ed. 2017. V. 56. № 20. P. 5402–5411. https://doi.org/10.1002/anie.201607552
- Basini L.E., Furesi F., Baumgärtl M., Mondelli N., Pauletto G. CO2 capture and utilization (CCU) by integrating water electrolysis, electrified reverse water gas shift (E-RWGS) and methanol synthesis // J. Cleaner Prod. 2022. V. 377. ID134280. https://doi.org/10.1016/j.jclepro.2022.134280
- Sequeira C.A.C., Santos D.M.F. Electrochemical routes for industrial synthesis // J. Braz. Chem. Soc. 2009. V. 20. P. 387–406. https://doi.org/10.1590/S0103-50532009000300002
- Sender M., Ziegenbalg D. Light sources for photochemical processes — estimation of technological potentials // Chem. Ing. Tech. 2017. V. 89. № 9. P. 1159–1173. https://doi.org/10.1002/cite.201600191
- Yao Y., Pan Y., Liu S. Power ultrasound and its applications: a state-of-the-art review // Ultrason. Sonochem. 2020. V. 62. ID104722. https://doi.org/10.1016/j.ultsonch.2019.104722
- Marshall R.J., Walsh F.C. A review of some recent electrolytic cell designs // Surf. Technol. 1985. V. 24. № 1. P. 45–77. https://doi.org/10.1016/0376-4583(85)90015-9
- Palys M.J., Daoutidis P. Power-to-X: a review and perspective // Comput. Chem. Eng. 2022. V. 165. ID107948. https://doi.org/10.1016/j.compchemeng.2022.107948
- Stankiewicz A.I., Nigar H. Beyond electrolysis: old challenges and new concepts of electricity-driven chemical reactors // React. Chem. Eng. 2020. V. 5 № 6. P. 1005–1016. https://doi.org/10.1039/D0RE00116C
- Houlding T.K., Rebrov E.V. Application of alternative energy forms in catalytic reactor engineering // Green Process. Synth. 2012. V. 1. № 1. P. 19–31. https://doi.org/10.1515/greenps-2011-0502
- Piyasena P., Dussault C., Koutchma T., Ramaswamy H.S., Awuah G.B. Radio frequency heating of foods: principles, applications and related properties — a review // Crit. Rev. Food Sci. Nutr. 2003. V. 43. № 6. P. 587–606. https://doi.org/10.1080/10408690390251129
- Richardson P. Thermal Technologies in Food Processing. Cambridge: Woodhead publishing limited, 2001. P. 163–177.
- Rudnev V., Loveless D., Cook R.L. Handbook of Induction Heating. Boca Raton: CRC Press, 2017. ID816. https://doi.org/10.1201/9781315117485-3
- De Alwis A.A.P., Fryer P.J. The use of direct resistance heating in the food industry // J. Food Eng. 1990. V. 11. № 1. P. 3–27. https://doi.org/10.1016/0260-8774(90)90036-8
- Gedye R., Smith F., Westaway K., Ali H., Baldisera L., Laberge L., Rousell J. The use of microwave ovens for rapid organic synthesis // Tetrahedron Lett. 1986. V. 27. № 3. P. 279–282. https://doi.org/10.1016/S0040-4039(00)83996-9
- Rana K.K., Rana S. Microwave reactors: a brief review on its fundamental aspects and applications // Open Access Library Journal. 2014. V. 1. № 6. P. 1–20. https://doi.org/10.4236/oalib.1100686
- Dinesen T.R.J., Tse M.Y., Depew M.C., Wan J.K.S. A mechanistic study of the microwave induced catalytic decompositions of organic halides // Res. Chem. Intermed. 1991. V. 15. № 2. P. 113–127. https://doi.org/10.1163/156856791X00020
- Zhang X., Hayward D.O. Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems // Inorg. Chim. Acta. 2006. V. 359. № 11. P. 3421–3433. https://doi.org/10.1016/j.ica.2006.01.037
- Durka T., Van Gerven T., Stankiewicz A. Microwaves in heterogeneous gas-phase catalysis: experimental and numerical approaches // Chem. Eng. Technol. 2009. V. 32. № 9. P. 1301–1312. https://doi.org/10.1002/ceat.200900207
- Sun J., Wang W., Yue Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies // Materials. 2016. V. 9. № 4. ID231. https://doi.org/10.3390/ma9040231
- Рязанов А.Г., Казбекова К.К., Барышев И.С., Сенин А.В., Михайлов Г.Г. Исследование процесса воздействия электромагнитного поля СВЧ на нагрев цинксодержащих продуктов // Вестник Южно-Уральского государственного университета. Серия: Металлургия. 2021. Т. 21. № 2. С. 5–17. https://doi.org/10.14529/met210201
- Priecel P., Lopez-Sanchez J.A. Advantages and limitations of microwave reactors: from chemical synthesis to the catalytic valorization of biobased chemicals // ACS Sustainable Chem. Eng. 2019. V. 7. № 1. P. 3–21. https://doi.org/10.1021/acssuschemeng.8b03286
- Kappe C.O. Controlled microwave heating in modern organic synthesis // Angew. Chem., Int. Ed. 2004. V. 43. № 46. P. 6250–6284. https://doi.org/10.1002/anie.200400655
- Zhang X., Hayward D.O., Mingos D.M.P. Microwave dielectric heating behavior of supported MoS2 and Pt catalysts // Ind. Eng. Chem. Res. 2001. V. 40. № 13. P. 2810–2817. https://doi.org/10.1021/ie0007825
- Patil N., Mishra N.K., Saed M.A., Green M.J., Wilhite B.A. Radio frequency driven heating of catalytic reactors for portable green chemistry // Adv. Sustainable Syst. 2020. V. 4. № 11. ID2000095. https://doi.org/10.1002/adsu.202000095
- Einaga H., Nasu Y., Oda M., Saito H. Catalytic performances of perovskite oxides for CO oxidation under microwave irradiation // Chem. Eng. J. 2016. V. 283. P. 97–104. https://doi.org/10.1016/j.cej.2015.07.051
- Pentsak E.O., Cherepanova V.A., Ananikov V.P. Dynamic behavior of metal nanoparticles in Pd/C and Pt/C catalytic systems under microwave and conventional heating // ACS Appl. Mater. Interfaces. 2017. V. 9. № 42. P. 36723–36732. https://doi.org/10.1021/acsami.7b09173
- Zhang X., Hayward D.O., Mingos D.M.P. Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating // Chem. Commun. 1999. № 11. P. 975–976. https://doi.org/10.1039/A901245A
- Nigar H., Sturm G.S.J., Garcia-Baños B., Peñaranda-Foix F.L., Catalá-Civera J.M., Mallada R., Stankiewicz A., Santamaría J. Numerical analysis of microwave heating cavity: combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed // Appl. Therm. Eng. 2019. V. 155. P. 226–238. https://doi.org/10.1016/j.applthermaleng.2019.03.117
- Ramirez A., Hueso J.L., Abian M., Alzueta M.U., Mallada R., Santamaria J. Escaping undesired gas-phase chemistry: microwave-driven selectivity enhancement in heterogeneous catalytic reactors // Sci. Adv. 2019. V. 5. № 3. ID eaau9000. https://doi.org/10.1126/sciadv.aau9000
- Kappe C.O. How to measure reaction temperature in microwave-heated transformations // Chem. Soc. Rev. 2013. V. 42. № 12. P. 4977–4990. https://doi.org/10.1039/C3CS00010A
- Will H., Scholz P., Ondruschka B., Burckhardt W. Multimode microwave reactor for heterogeneous gas-phase catalysis // Chem. Eng. Technol. 2003. V. 26. № 11. P. 1146–1149. https://doi.org/10.1002/ceat.200303036
- Gangurde L.S., Sturm G.S.J., Devadiga T.J., Stankiewicz A.I., Stefanidis G. D. Complexity and challenges in noncontact high temperature measurements in microwave-assisted catalytic reactors // Ind. Eng. Chem. Res. 2017. V. 56. № 45. P. 13379–13391. https://doi.org/10.1021/acs.iecr.7b02091
- Bogdal D., Bednarz S., Lukasiewicz M. Microwave induced thermal gradients in solventless reaction systems // Tetrahedron. 2006. V. 62. № 40. P. 9440–9445. https://doi.org/10.1016/j.tet.2006.07.038
- Glaspell G., Fuoco L., El-Shall M.S. Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation // J. Phys. Chem. B. 2005. V. 109. № 37. P. 17350–17355. https://doi.org/10.1021/jp0526849
- Eryildirim B., Arbag H., Oktar N., Dogu G. Comparison of microwave and conventionally heated reactor performances in catalytic dehydrogenation of ethane // Int. J. Hydrogen Energy. 2021. V. 46. № 7. P. 5296–5310. https://doi.org/10.1016/j.ijhydene.2020.11.067
- Conde L.D., Marún C., Suib S.L. Oligomerization of methane via microwave heating using Raney nickel catalyst // J. Catal. 2003. V. 218. № 1. P. 201–208. https://doi.org/10.1016/S0021-9517(03)00083-6
- Nguyen H.M., Sunarso J., LiC., Pham G.H., Phan C., Liu S. Microwave-assisted catalytic methane reforming: a review // Appl. Catal., A. 2020. V. 599. ID117620. https://doi.org/10.1016/j.apcata.2020.117620
- Lawan I., Garba Z.N., Zhou W., Zhang M., Yuan Z. Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production // Renewable Energy. 2020. V. 145. P. 2550–2560. https://doi.org/10.1016/j.renene.2019.08.008
- Ge S., Yek P.N.Y., Cheng Y.W., Xia C., Wan Mahari W.A., Liew R.K., Peng W., Yuan T.Q., Tabatabaei M., Aghbashlo M., Sonne C., Lam S. S. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: a batch to continuous approach // Renewable Sustainable Energy Rev. 2021. V. 135. ID110148. https://doi.org/10.1016/j.rser.2020.110148
- Dios García I. de Stankiewicz A., Nigar H. Syngas production via microwave-assisted dry reforming of methane // Catal. Today. 2021. V. 362. P. 72–80.https://doi.org/10.1016/j.cattod.2020.04.045
- Julian I., Ramirez H., Hueso J.L., Mallada R., Santamaria J. Non-oxidative methane conver-sion in microwave-assisted structured reactors // Chem. Eng. J. 2019. V. 377. ID119764. https://doi.org/10.1016/j.cej.2018.08.150
- URL: https://www.sairem.com / сайт фирмы “Sairem”, 2020 (дата обращения: 28.03.2023).
- Eghbal S.F., Ghorbani M., Stankiewicz A., Nigar H. Coaxial traveling-wave microwave reactors: design challenges and solutions // Chem. Eng. Res. Des. 2020. V. 153. P. 677–683. https://doi.org/10.1016/j.cherd.2019.11.022
- Komorowska-Durka M., Loo M.B., Sturm G.S.J., Radoiu M., Oudshoorn M., Van Gerven T., Stankiewicz A.I., Stefanidis G.D. Novel microwave reactor equipment using internal transmission line (INTLI) for efficient liquid phase chemistries: a study-case of polyester preparation // Chemical Engineering and Processing: Process Intensification. 2013. V. 69. P. 83–89. https://doi.org/10.1016/j.cep.2013.03.003
- URL: https://mwcc.jp / сайт фирмы “Microwave Chemical Co., Ltd.” (дата обращения 26.12.2023).
- URL: https://www.pyrowave.com/en/equipments/pw6 / сайт фирмы “Pyrowave”, 2021–2023 (дата обращения 28.03.2023).
- Vishnuram P., Ramachandiran G., Sudhakar Babu T., Nastasi B. Induction heating in domestic cooking and industrial melting applications: a systematic review on modelling, converter topologies and control schemes // Energies. 2021. V. 14. № 20. ID6634. https://doi.org/10.3390/en14206634
- Evans M.N. A reactor for high‐temperature pyrolysis and oxygen isotopic analysis of cellulose via induction heating // Rapid Commun. Mass Spectrom. 2008. V. 30. № 14. P. 2211–2219. https://doi.org/10.1002/rcm.3603
- Latifi M., Chaouki J. A novel induction heating fluidized bed reactor: its design and applications in high temperature screening tests with solid feedstocks and prediction of defluidization state // AIChE J. 2015. V. 61. № 5. P. 1507–1523. https://doi.org/10.1002/aic.14749
- Erickson C.J. Handbook of Electrical Heating for Industry. NY: IEEE; illustrated edition, 1994. P. 145–180.
- Archibald R.C., May N.C., Greensfelder B.S. Experimental catalytic and thermal cracking at high temperature and high space velocity // Ind. Eng. Chem. 1952. V. 44. № 8. P. 1811–1817. https://doi.org/10.1021/ie50512a032
- Patent GB № 2210286A. Griffith J.T., Gardner D.A. Method of performing endothermic catalytic reactions.
- Patent US № 5958273A. Koch T.A., Krause K.R., Mehdizadeh M., Sengupta S.K., Blackwell B.E. Induction heated reactor apparatus.
- Ceylan S., Coutable L., Wegner J., Kirschning A. Inductive heating with magnetic materials inside flow reactors // Chem. Eur. J. 2011. V. 17. № 6. P. 1884–1893. https://doi.org/10.1002/chem.201002291
- Ceylan S., Friese C., Lammel C., Mazac K., Kirschning A. Inductive heating for organic synthesis by using functionalized magnetic nanoparticles inside microreactors // Angew. Chem., Int. Ed. 2008. V. 47. № 46. P. 8950–8953. https://doi.org/10.1002/anie.200801474
- Chatterjee S., Degirmenci V., Rebrov E.V. Design and operation of a radio-frequency heated micro-trickle bed reactor for consecutive catalytic reactions // Chem. Eng. J. 2015. V. 281. P. 884–891. https://doi.org/10.1016/j.cej.2015.06.096
- Chatterjee S., Degirmenci V., Aiouache F., Rebrov E. V. Design of a radio frequency heated isothermal micro-trickle bed reactor // Chem. Eng. J. 2014. V. 243. P. 225–233. https://doi.org/10.1016/j.cej.2013.12.059
- Fitch N.E. Induction electric furnace. Patent US № 1830481A.
- Hitner H.F. Process and apparatus for melting glass by electricity. Patent US № 1906594A.
- Maurice D. Heating and melting process of vitreous materials and furnace therefor. Patent US № 3205292A.
- Apple J.M., Zak T. Regulated flow glass melting furnace. Patent US № 3244495A.
- Schwenninger R.L. A induction heating vessel. Patent US № 4633481A.
- Varsano F., Bellusci M., La Barbera A., Petrecca M., Albino M., Sangregorio C. Dry reforming of methane powered by magnetic induction // Int. J. Hydrogen Energy. 2019. V. 44. № 38. P. 21037–21044. https://doi.org/10.1016/j.ijhydene.2019.02.055
- Patent US № 7070743B2. Benny E. Blackwell B.E., Fallon C.K., Kirby G.S., Mehdizadeh M., Koch T.A., Pereira C.J., Sengupta S.K. Induction-heated reactors for gas phase catalyzed reactions.
- Fireteanu V., Paya B., Nuns J., Neau Y., Tudorache T., Spahiu A. Medium frequency induction‐heated chemical reactor with cooling metallic envelope of the tank // COMPEL — Int. J. for Comput. and Mat. in Electric. and Electronic Engin. 2005. V. 24. № 1. P. 324–333. https://doi.org/10.1108/03321640510571345
- Fang X., Lu J., Wang J., Yang J. Parameter optimization and prediction model of induction heating for large-diameter pipe // Math. Probl. Eng. 2018. V. 2018. P. 1–12. https://doi.org/10.1155/2018/8430578
- URL: http://inductionheater-inc.com/induction-heating-for-chemical-reactor.html / сайт фирмы “Shenzhen Biyuanda Technology Co. Ltd. (BIYDA)” (дата обращения 28.03.2023).
- URL: https://dw-inductionheater.com/product/induction-reactor-heating / сайт фирмы “HLQ Induction Equipment Co., Ltd.” (дата обращения 28.03.2023).
- URL: http://www.interpowereurope.com/interpower-induction-products/induction-heating-for-vessels-batch-reactors / сайт фирмы “Interpowereurope” (дата обращения 28.03.2023).
- URL: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2016/august/columns/processing-radio-frequency-processing-of-food / сайт института “Institute of Food Technologists” (дата обращения 28.03.2023).
- Awuah G.B., Ramaswamy H.S., Tang J. Radio-Frequency Heating in Food Processing: Principles and Applications. Boca Raton: CRC Press, 2014. P. 3–31.
- Patil N., Camacho A.C., Mishra N.K., Singhla P., Sweeney C.B., Saed M.A., Radovic M., Green M.J. Radio frequency and microwave heating of preceramic polymer nanocomposites with applications in mold-free processing // Adv. Eng. Mater. 2019. V. 21. № 8. ID1900276. https://doi.org/10.1002/adem.201900276
- Marra F., Zhang L., Lyng J.G. Radio frequency treatment of foods: review of recent advances // J. Food Eng. 2009. V. 91. № 4. P. 497–508. https://doi.org/10.1016/j.jfoodeng.2008.10.015
- Ni Y., Mulier S., Miao Y., Michel L., Marchal G. A review of the general aspects of radiofre-quency ablation // Abdominal Imaging. 2005. V. 30. № 4. P. 381–400. https://doi.org/10.1007/s00261-004-0253-9
- Zhou X., Wang S. Recent developments in radio frequency drying of food and agricultural products: a review // Drying Technol. 2019. V. 37. № 3. P. 271–286. https://doi.org/10.1080/07373937.2018.1452255
- Zhou B., Avramidis S. On the loss factor of wood during radio frequency heating // Wood Sci. Technol. 1999. V. 33. № 4. P. 299–310. https://doi.org/10.1007/s002260050117
- URL: https://radiofrequency.com / сайт фирмы “Radio Frequency Co.” (дата обращения 28.03.2023).
- URL: https://www.stalam.com/eng / сайт фирмы “Stalam Radio Frequency Equipment” (дата обращения 28.03.2023).
- URL: https://www.strayfield.co.uk / сайт фирмы “Strayfield” (дата обращения 28.03.2023).
- Anas M., Zhao Y., Saed M.A., Ziegler K.J., Green M.J. Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes // Nanoscale. 2019. V. 11. № 19. P. 9617–9625. https://doi.org/10.1039/C9NR01600G
- Ioffe M.S., Pollington S.D., Wan J.K.S. High-power pulsed radio-frequency and microwave catalytic processes: selective production of acetylene from the reaction of methane over carbon // J. Catal. 1995. V. 151. № 2. P. 349–355. https://doi.org/10.1006/jcat.1995.1037
- Liu S., McDonald T., Wang Y. Producing biodiesel from high free fatty acids waste cooking oil assisted by radio frequency heating // Fuel. 2010. V. 89. № 10. P. 2735–2740. https://doi.org/10.1016/j.fuel.2010.03.011
- Liu S., Wang Y., McDonald T., Taylor S.E. Efficient production of biodiesel using radio frequency heating // Energy Fuels. 2008. V. 22. № 3. P. 2116–2120. https://doi.org/10.1021/ef800038g
- Faudot E., Devaux S., Moritz J., Heuraux S., Molina Cabrera P., Brochard F. A linear radio frequency plasma reactor for potential and current mapping in a magnetized plasma // Rev. Sci. Instrum. 2015. V. 86. № 6. P. 063502. https://doi.org/10.1063/1.4921905
- Ghorui S., Sahasrabudhe S., Dhamale G., Kanhe N., Mathe V., Bhoraskar S., Das A. Characteristics of synthesized alumina nanoparticles in a high-pressure radio frequency thermal plasma reactor // IEEE Trans. Plasma Sci. 2014. V. 42. № 3. P. 759–766. https://doi.org/10.1109/TPS.2014.2299871
- Lewis J. Decarbonising fired process heaters with zero-emission electric heat // Decarbonisation Technology. 2022. V. Nov. P. 81–86.
- Long D. Decarbonisation, electrification and the case for modern electric process heaters // Decarbonisation Technology. 2020. V. Jul. P. 1–4.
- URL: https://masterwatt.ru / сайт фирмы ООО “Мастер ВАТТ” (дата обращения 28.03.2023).
- URL: https://elektroteni.ru / сайт фирмы ООО “ПК Марион” (дата обращения 28.03.2023).
- URL: https://polymernagrev.ru / сайт фирмы ООО “Полимернагрев” (дата обращения 28.03.2023).
- Jones M. Electric process heaters help decarbonise petrochemical refining // Decarbonisation Technology. 2022. V. Nov. P. 75–79.
- URL: https://www.watlow.com / сайт фирмы “Watlow” (дата обращения 28.03.2023).
- URL: https://www.san-as.com / сайт фирмы “SAN Electro Heat” (дата обращения 28.03.2023).
- URL: https://www.tutco.com / сайт фирмы “TUTCO Heating Solution Group” (дата обращения 28.03.2023).
- Пилипенко А.И. Промышленные электронагреватели // Промышленный электрообогрев и электроотопление. 2012. № 1. С. 28–34.
- URL: https://www.watlow.com/Products/Heaters/Circulation-Heaters/HELIMAX-Heat-Exchanger / страница продукта фирмы “Watlow” (дата обращения 28.03.2023).
- Roux S., Courel M., Picart-Palmade L., Pain J.P. Design of an ohmic reactor to study the kinetics of thermal reactions in liquid products // J. Food Eng. 2010. V. 98. № 4. P. 398–407. https://doi.org/10.1016/j.jfoodeng.2010.01.013
- Wismann S.T., Engbæk J.S., Vendelbo S.B., Bendixen F.B., Eriksen W.L., Aasberg-Petersen K., Frandsen C., Chorkendorff I., Mortensen P.M. Electrified methane reforming: a compact approach to greener industrial hydrogen production // Science. 2019. V. 364. № 6442. P. 756–759. https://doi.org/10.1126/science.aaw8775
- Li J., Lu X., Wu F., Cheng W., Zhang W., Qin S., Wang Z., You Z. Electroplated palladium catalysts on FeCr alloy for joule-heat-ignited catalytic elimination of ethylene in air // Ind. Eng. Chem. Res. 2017. V. 56. № 44. P. 12520–12528. https://doi.org/10.1021/acs.iecr.7b03044
- Renda S., Cortese M., Iervolino G., Martino M., Meloni E., Palma V. Electrically driven SiC-based structured catalysts for intensified reforming processes // Catal. Today. 2022. V. 383. P. 31–43. https://doi.org/10.1016/j.cattod.2020.11.020
- Nie Z., Hou Y., Xie G., Cui Y., Yu X. Electric heating of the silicon rods in Siemens reactor // Int. J. Heat Mass Transfer. 2015. V. 90. P. 1026–1033. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.040
- Kim T., Chung D.D.L. Carbon fiber mats as resistive heating elements // Carbon. 2003. V. 41. № 12. P. 2436–2440. https://doi.org/10.1016/S0008-6223(03)00288-4
- Gal E., Bassen D., Bevelsdorf M., Lina M., Mennarich H., Webb R. Electrically heated reactor and process for carrying out gas reactions at a high temperature using this reactor. Patent CN № 100381200C.
- Burch S.D., Pettit W.H., Goebel S.G. Fuel processor primary reactor and combustor startup via electrically-heated catalyst. Patent US № 7862631B2.
- Mortensen P.M., Klein R., Aasberg-Petersen K. Steam reforming heated by resistance heating. Patent EP № 3801870B1.
- Balakotaiah V., Ratnakar R.R. Modular reactors with electrical resistance heating for hydrocarbon cracking and other endothermic reactions // AIChE J. 2022. V. 68. № 2. ID e17542. https://doi.org/10.1002/aic.17542
- URL: https://energynews.biz/renewable-hydrogen-production-facility-as-a-test-bed / страница ресурса “H2 Energy News” (дата обращения 09.01.2024).
- URL: https://www.world-energy.org/article/12675.html / страница ресурса “World-Energy” (дата обращения 09.01.2024).
- Rowe S.C., Hischier I., Palumbo A.W., Chubukov B.A., Wallace M.A., Viger R., Lewandowski A., Clough D.E., Weimer A.W. Nowcasting, predictive control, and feedback control for temperature regulation in a novel hybrid solar-electric reactor for continuous solar-thermal chemical processing // Sol. Energy. 2018. V. 174. P. 474–488.https://doi.org/10.1016/j.solener.2018.09.005
Supplementary files
