Использование прямого электрического нагрева в химических процессах (обзор)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В обзоре проведен анализ существующих концепций использования электроэнергии для нагрева химических реакторов, прежде всего применяемых для проведения гетерогенно-каталитических процессов. Кратко рассмотрены основные способы использования электронагрева в химических реакциях, приведены примеры внедрения электронагрева на промышленном уровне, а также дана оценка перспектив перехода промышленности с традиционных систем нагрева на электрические.

Full Text

Restricted Access

About the authors

Петр Сергеевич Кузнецов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Author for correspondence.
Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0002-3140-3035

к. х. н.

Russian Federation, 119991, Москва

Константин Игоревич Дементьев

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0002-8102-8624

к. х. н.

Russian Federation, 119991, Москва

Тимур Ахметович Паланкоев

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0001-9880-6755

к. х. н.

Russian Federation, 119991, Москва

Антон Львович Максимов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0001-9297-4950

д. х. н., чл.- корр. РАН

Russian Federation, 119991, Москва

References

  1. URL: https://www.eia.gov/energyexplained/use-of-energy/industry.php / сайт американской статистики и анализа “U. S. Energy Information Administration” (дата обращения 28.03.2023).
  2. Jeffry L., Ong M.Y., Nomanbhay S., Mofijur M., Mubashir M., Show P.L. Greenhouse gases utilization: a review // Fuel. 2021. V. 301. ID121017. https://doi.org/10.1016/j.fuel.2021.121017
  3. Tanha Z.M., B.N., Baghmisheh G., Younesi H. Greenhouse gas emission estimation of flaring in a gas processing plant: technique development // Process Saf. Environ. Prot. 2019. V. 123. P. 289–298. https://doi.org/10.1016/j.psep.2019.01.008
  4. Harrison K. The political economy of British Columbia’s carbon tax // OECD Environment Working Papers. 2013. № 63. P. 1–22. https://doi.org/10.1787/5k3z04gkkhkg-en
  5. URL: https://taxation-customs.ec.europa.eu/green-taxation-0/carbon-border-adjustment-mechanism_en / сайт Европейской комиссии “Carbon Border Adjustment Mechanism” (дата обращения 25.12.2023).
  6. Bloess A., Schill W.P., Zerrahn A. Power-to-heat for renewable energy integration: a review of technologies, modeling approaches, and flexibility potentials // Appl. Energy. 2018. V. 212. P. 1611–1626. https://doi.org/10.1016/j.apenergy.2017.12.073
  7. Sandaka B.P., Kumar J. Alternative vehicular fuels for environmental decarbonization: a critical review of challenges in using electricity, hydrogen, and biofuels as a sustainable vehicular fuel // Chem. Eng. J. Adv. 2023. V. 14. ID100442. https://doi.org/10.1016/j.ceja.2022.100442
  8. Foit S.R., Vinke I.C., de Haart L.G.J., Eichel R.A. Power-to-syngas: an enabling technology for the transition of the energy system? // Angew. Chem., Int. Ed. 2017. V. 56. № 20. P. 5402–5411. https://doi.org/10.1002/anie.201607552
  9. Basini L.E., Furesi F., Baumgärtl M., Mondelli N., Pauletto G. CO2 capture and utilization (CCU) by integrating water electrolysis, electrified reverse water gas shift (E-RWGS) and methanol synthesis // J. Cleaner Prod. 2022. V. 377. ID134280. https://doi.org/10.1016/j.jclepro.2022.134280
  10. Sequeira C.A.C., Santos D.M.F. Electrochemical routes for industrial synthesis // J. Braz. Chem. Soc. 2009. V. 20. P. 387–406. https://doi.org/10.1590/S0103-50532009000300002
  11. Sender M., Ziegenbalg D. Light sources for photochemical processes — estimation of technological potentials // Chem. Ing. Tech. 2017. V. 89. № 9. P. 1159–1173. https://doi.org/10.1002/cite.201600191
  12. Yao Y., Pan Y., Liu S. Power ultrasound and its applications: a state-of-the-art review // Ultrason. Sonochem. 2020. V. 62. ID104722. https://doi.org/10.1016/j.ultsonch.2019.104722
  13. Marshall R.J., Walsh F.C. A review of some recent electrolytic cell designs // Surf. Technol. 1985. V. 24. № 1. P. 45–77. https://doi.org/10.1016/0376-4583(85)90015-9
  14. Palys M.J., Daoutidis P. Power-to-X: a review and perspective // Comput. Chem. Eng. 2022. V. 165. ID107948. https://doi.org/10.1016/j.compchemeng.2022.107948
  15. Stankiewicz A.I., Nigar H. Beyond electrolysis: old challenges and new concepts of electricity-driven chemical reactors // React. Chem. Eng. 2020. V. 5 № 6. P. 1005–1016. https://doi.org/10.1039/D0RE00116C
  16. Houlding T.K., Rebrov E.V. Application of alternative energy forms in catalytic reactor engineering // Green Process. Synth. 2012. V. 1. № 1. P. 19–31. https://doi.org/10.1515/greenps-2011-0502
  17. Piyasena P., Dussault C., Koutchma T., Ramaswamy H.S., Awuah G.B. Radio frequency heating of foods: principles, applications and related properties — a review // Crit. Rev. Food Sci. Nutr. 2003. V. 43. № 6. P. 587–606. https://doi.org/10.1080/10408690390251129
  18. Richardson P. Thermal Technologies in Food Processing. Cambridge: Woodhead publishing limited, 2001. P. 163–177.
  19. Rudnev V., Loveless D., Cook R.L. Handbook of Induction Heating. Boca Raton: CRC Press, 2017. ID816. https://doi.org/10.1201/9781315117485-3
  20. De Alwis A.A.P., Fryer P.J. The use of direct resistance heating in the food industry // J. Food Eng. 1990. V. 11. № 1. P. 3–27. https://doi.org/10.1016/0260-8774(90)90036-8
  21. Gedye R., Smith F., Westaway K., Ali H., Baldisera L., Laberge L., Rousell J. The use of microwave ovens for rapid organic synthesis // Tetrahedron Lett. 1986. V. 27. № 3. P. 279–282. https://doi.org/10.1016/S0040-4039(00)83996-9
  22. Rana K.K., Rana S. Microwave reactors: a brief review on its fundamental aspects and applications // Open Access Library Journal. 2014. V. 1. № 6. P. 1–20. https://doi.org/10.4236/oalib.1100686
  23. Dinesen T.R.J., Tse M.Y., Depew M.C., Wan J.K.S. A mechanistic study of the microwave induced catalytic decompositions of organic halides // Res. Chem. Intermed. 1991. V. 15. № 2. P. 113–127. https://doi.org/10.1163/156856791X00020
  24. Zhang X., Hayward D.O. Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems // Inorg. Chim. Acta. 2006. V. 359. № 11. P. 3421–3433. https://doi.org/10.1016/j.ica.2006.01.037
  25. Durka T., Van Gerven T., Stankiewicz A. Microwaves in heterogeneous gas-phase catalysis: experimental and numerical approaches // Chem. Eng. Technol. 2009. V. 32. № 9. P. 1301–1312. https://doi.org/10.1002/ceat.200900207
  26. Sun J., Wang W., Yue Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies // Materials. 2016. V. 9. № 4. ID231. https://doi.org/10.3390/ma9040231
  27. Рязанов А.Г., Казбекова К.К., Барышев И.С., Сенин А.В., Михайлов Г.Г. Исследование процесса воздействия электромагнитного поля СВЧ на нагрев цинксодержащих продуктов // Вестник Южно-Уральского государственного университета. Серия: Металлургия. 2021. Т. 21. № 2. С. 5–17. https://doi.org/10.14529/met210201
  28. Priecel P., Lopez-Sanchez J.A. Advantages and limitations of microwave reactors: from chemical synthesis to the catalytic valorization of biobased chemicals // ACS Sustainable Chem. Eng. 2019. V. 7. № 1. P. 3–21. https://doi.org/10.1021/acssuschemeng.8b03286
  29. Kappe C.O. Controlled microwave heating in modern organic synthesis // Angew. Chem., Int. Ed. 2004. V. 43. № 46. P. 6250–6284. https://doi.org/10.1002/anie.200400655
  30. Zhang X., Hayward D.O., Mingos D.M.P. Microwave dielectric heating behavior of supported MoS2 and Pt catalysts // Ind. Eng. Chem. Res. 2001. V. 40. № 13. P. 2810–2817. https://doi.org/10.1021/ie0007825
  31. Patil N., Mishra N.K., Saed M.A., Green M.J., Wilhite B.A. Radio frequency driven heating of catalytic reactors for portable green chemistry // Adv. Sustainable Syst. 2020. V. 4. № 11. ID2000095. https://doi.org/10.1002/adsu.202000095
  32. Einaga H., Nasu Y., Oda M., Saito H. Catalytic performances of perovskite oxides for CO oxidation under microwave irradiation // Chem. Eng. J. 2016. V. 283. P. 97–104. https://doi.org/10.1016/j.cej.2015.07.051
  33. Pentsak E.O., Cherepanova V.A., Ananikov V.P. Dynamic behavior of metal nanoparticles in Pd/C and Pt/C catalytic systems under microwave and conventional heating // ACS Appl. Mater. Interfaces. 2017. V. 9. № 42. P. 36723–36732. https://doi.org/10.1021/acsami.7b09173
  34. Zhang X., Hayward D.O., Mingos D.M.P. Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating // Chem. Commun. 1999. № 11. P. 975–976. https://doi.org/10.1039/A901245A
  35. Nigar H., Sturm G.S.J., Garcia-Baños B., Peñaranda-Foix F.L., Catalá-Civera J.M., Mallada R., Stankiewicz A., Santamaría J. Numerical analysis of microwave heating cavity: combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed // Appl. Therm. Eng. 2019. V. 155. P. 226–238. https://doi.org/10.1016/j.applthermaleng.2019.03.117
  36. Ramirez A., Hueso J.L., Abian M., Alzueta M.U., Mallada R., Santamaria J. Escaping undesired gas-phase chemistry: microwave-driven selectivity enhancement in heterogeneous catalytic reactors // Sci. Adv. 2019. V. 5. № 3. ID eaau9000. https://doi.org/10.1126/sciadv.aau9000
  37. Kappe C.O. How to measure reaction temperature in microwave-heated transformations // Chem. Soc. Rev. 2013. V. 42. № 12. P. 4977–4990. https://doi.org/10.1039/C3CS00010A
  38. Will H., Scholz P., Ondruschka B., Burckhardt W. Multimode microwave reactor for heterogeneous gas-phase catalysis // Chem. Eng. Technol. 2003. V. 26. № 11. P. 1146–1149. https://doi.org/10.1002/ceat.200303036
  39. Gangurde L.S., Sturm G.S.J., Devadiga T.J., Stankiewicz A.I., Stefanidis G. D. Complexity and challenges in noncontact high temperature measurements in microwave-assisted catalytic reactors // Ind. Eng. Chem. Res. 2017. V. 56. № 45. P. 13379–13391. https://doi.org/10.1021/acs.iecr.7b02091
  40. Bogdal D., Bednarz S., Lukasiewicz M. Microwave induced thermal gradients in solventless reaction systems // Tetrahedron. 2006. V. 62. № 40. P. 9440–9445. https://doi.org/10.1016/j.tet.2006.07.038
  41. Glaspell G., Fuoco L., El-Shall M.S. Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation // J. Phys. Chem. B. 2005. V. 109. № 37. P. 17350–17355. https://doi.org/10.1021/jp0526849
  42. Eryildirim B., Arbag H., Oktar N., Dogu G. Comparison of microwave and conventionally heated reactor performances in catalytic dehydrogenation of ethane // Int. J. Hydrogen Energy. 2021. V. 46. № 7. P. 5296–5310. https://doi.org/10.1016/j.ijhydene.2020.11.067
  43. Conde L.D., Marún C., Suib S.L. Oligomerization of methane via microwave heating using Raney nickel catalyst // J. Catal. 2003. V. 218. № 1. P. 201–208. https://doi.org/10.1016/S0021-9517(03)00083-6
  44. Nguyen H.M., Sunarso J., LiC., Pham G.H., Phan C., Liu S. Microwave-assisted catalytic methane reforming: a review // Appl. Catal., A. 2020. V. 599. ID117620. https://doi.org/10.1016/j.apcata.2020.117620
  45. Lawan I., Garba Z.N., Zhou W., Zhang M., Yuan Z. Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production // Renewable Energy. 2020. V. 145. P. 2550–2560. https://doi.org/10.1016/j.renene.2019.08.008
  46. Ge S., Yek P.N.Y., Cheng Y.W., Xia C., Wan Mahari W.A., Liew R.K., Peng W., Yuan T.Q., Tabatabaei M., Aghbashlo M., Sonne C., Lam S. S. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: a batch to continuous approach // Renewable Sustainable Energy Rev. 2021. V. 135. ID110148. https://doi.org/10.1016/j.rser.2020.110148
  47. Dios García I. de Stankiewicz A., Nigar H. Syngas production via microwave-assisted dry reforming of methane // Catal. Today. 2021. V. 362. P. 72–80.https://doi.org/10.1016/j.cattod.2020.04.045
  48. Julian I., Ramirez H., Hueso J.L., Mallada R., Santamaria J. Non-oxidative methane conver-sion in microwave-assisted structured reactors // Chem. Eng. J. 2019. V. 377. ID119764. https://doi.org/10.1016/j.cej.2018.08.150
  49. URL: https://www.sairem.com / сайт фирмы “Sairem”, 2020 (дата обращения: 28.03.2023).
  50. Eghbal S.F., Ghorbani M., Stankiewicz A., Nigar H. Coaxial traveling-wave microwave reactors: design challenges and solutions // Chem. Eng. Res. Des. 2020. V. 153. P. 677–683. https://doi.org/10.1016/j.cherd.2019.11.022
  51. Komorowska-Durka M., Loo M.B., Sturm G.S.J., Radoiu M., Oudshoorn M., Van Gerven T., Stankiewicz A.I., Stefanidis G.D. Novel microwave reactor equipment using internal transmission line (INTLI) for efficient liquid phase chemistries: a study-case of polyester preparation // Chemical Engineering and Processing: Process Intensification. 2013. V. 69. P. 83–89. https://doi.org/10.1016/j.cep.2013.03.003
  52. URL: https://mwcc.jp / сайт фирмы “Microwave Chemical Co., Ltd.” (дата обращения 26.12.2023).
  53. URL: https://www.pyrowave.com/en/equipments/pw6 / сайт фирмы “Pyrowave”, 2021–2023 (дата обращения 28.03.2023).
  54. Vishnuram P., Ramachandiran G., Sudhakar Babu T., Nastasi B. Induction heating in domestic cooking and industrial melting applications: a systematic review on modelling, converter topologies and control schemes // Energies. 2021. V. 14. № 20. ID6634. https://doi.org/10.3390/en14206634
  55. Evans M.N. A reactor for high‐temperature pyrolysis and oxygen isotopic analysis of cellulose via induction heating // Rapid Commun. Mass Spectrom. 2008. V. 30. № 14. P. 2211–2219. https://doi.org/10.1002/rcm.3603
  56. Latifi M., Chaouki J. A novel induction heating fluidized bed reactor: its design and applications in high temperature screening tests with solid feedstocks and prediction of defluidization state // AIChE J. 2015. V. 61. № 5. P. 1507–1523. https://doi.org/10.1002/aic.14749
  57. Erickson C.J. Handbook of Electrical Heating for Industry. NY: IEEE; illustrated edition, 1994. P. 145–180.
  58. Archibald R.C., May N.C., Greensfelder B.S. Experimental catalytic and thermal cracking at high temperature and high space velocity // Ind. Eng. Chem. 1952. V. 44. № 8. P. 1811–1817. https://doi.org/10.1021/ie50512a032
  59. Patent GB № 2210286A. Griffith J.T., Gardner D.A. Method of performing endothermic catalytic reactions.
  60. Patent US № 5958273A. Koch T.A., Krause K.R., Mehdizadeh M., Sengupta S.K., Blackwell B.E. Induction heated reactor apparatus.
  61. Ceylan S., Coutable L., Wegner J., Kirschning A. Inductive heating with magnetic materials inside flow reactors // Chem. Eur. J. 2011. V. 17. № 6. P. 1884–1893. https://doi.org/10.1002/chem.201002291
  62. Ceylan S., Friese C., Lammel C., Mazac K., Kirschning A. Inductive heating for organic synthesis by using functionalized magnetic nanoparticles inside microreactors // Angew. Chem., Int. Ed. 2008. V. 47. № 46. P. 8950–8953. https://doi.org/10.1002/anie.200801474
  63. Chatterjee S., Degirmenci V., Rebrov E.V. Design and operation of a radio-frequency heated micro-trickle bed reactor for consecutive catalytic reactions // Chem. Eng. J. 2015. V. 281. P. 884–891. https://doi.org/10.1016/j.cej.2015.06.096
  64. Chatterjee S., Degirmenci V., Aiouache F., Rebrov E. V. Design of a radio frequency heated isothermal micro-trickle bed reactor // Chem. Eng. J. 2014. V. 243. P. 225–233. https://doi.org/10.1016/j.cej.2013.12.059
  65. Fitch N.E. Induction electric furnace. Patent US № 1830481A.
  66. Hitner H.F. Process and apparatus for melting glass by electricity. Patent US № 1906594A.
  67. Maurice D. Heating and melting process of vitreous materials and furnace therefor. Patent US № 3205292A.
  68. Apple J.M., Zak T. Regulated flow glass melting furnace. Patent US № 3244495A.
  69. Schwenninger R.L. A induction heating vessel. Patent US № 4633481A.
  70. Varsano F., Bellusci M., La Barbera A., Petrecca M., Albino M., Sangregorio C. Dry reforming of methane powered by magnetic induction // Int. J. Hydrogen Energy. 2019. V. 44. № 38. P. 21037–21044. https://doi.org/10.1016/j.ijhydene.2019.02.055
  71. Patent US № 7070743B2. Benny E. Blackwell B.E., Fallon C.K., Kirby G.S., Mehdizadeh M., Koch T.A., Pereira C.J., Sengupta S.K. Induction-heated reactors for gas phase catalyzed reactions.
  72. Fireteanu V., Paya B., Nuns J., Neau Y., Tudorache T., Spahiu A. Medium frequency induction‐heated chemical reactor with cooling metallic envelope of the tank // COMPEL — Int. J. for Comput. and Mat. in Electric. and Electronic Engin. 2005. V. 24. № 1. P. 324–333. https://doi.org/10.1108/03321640510571345
  73. Fang X., Lu J., Wang J., Yang J. Parameter optimization and prediction model of induction heating for large-diameter pipe // Math. Probl. Eng. 2018. V. 2018. P. 1–12. https://doi.org/10.1155/2018/8430578
  74. URL: http://inductionheater-inc.com/induction-heating-for-chemical-reactor.html / сайт фирмы “Shenzhen Biyuanda Technology Co. Ltd. (BIYDA)” (дата обращения 28.03.2023).
  75. URL: https://dw-inductionheater.com/product/induction-reactor-heating / сайт фирмы “HLQ Induction Equipment Co., Ltd.” (дата обращения 28.03.2023).
  76. URL: http://www.interpowereurope.com/interpower-induction-products/induction-heating-for-vessels-batch-reactors / сайт фирмы “Interpowereurope” (дата обращения 28.03.2023).
  77. URL: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2016/august/columns/processing-radio-frequency-processing-of-food / сайт института “Institute of Food Technologists” (дата обращения 28.03.2023).
  78. Awuah G.B., Ramaswamy H.S., Tang J. Radio-Frequency Heating in Food Processing: Principles and Applications. Boca Raton: CRC Press, 2014. P. 3–31.
  79. Patil N., Camacho A.C., Mishra N.K., Singhla P., Sweeney C.B., Saed M.A., Radovic M., Green M.J. Radio frequency and microwave heating of preceramic polymer nanocomposites with applications in mold-free processing // Adv. Eng. Mater. 2019. V. 21. № 8. ID1900276. https://doi.org/10.1002/adem.201900276
  80. Marra F., Zhang L., Lyng J.G. Radio frequency treatment of foods: review of recent advances // J. Food Eng. 2009. V. 91. № 4. P. 497–508. https://doi.org/10.1016/j.jfoodeng.2008.10.015
  81. Ni Y., Mulier S., Miao Y., Michel L., Marchal G. A review of the general aspects of radiofre-quency ablation // Abdominal Imaging. 2005. V. 30. № 4. P. 381–400. https://doi.org/10.1007/s00261-004-0253-9
  82. Zhou X., Wang S. Recent developments in radio frequency drying of food and agricultural products: a review // Drying Technol. 2019. V. 37. № 3. P. 271–286. https://doi.org/10.1080/07373937.2018.1452255
  83. Zhou B., Avramidis S. On the loss factor of wood during radio frequency heating // Wood Sci. Technol. 1999. V. 33. № 4. P. 299–310. https://doi.org/10.1007/s002260050117
  84. URL: https://radiofrequency.com / сайт фирмы “Radio Frequency Co.” (дата обращения 28.03.2023).
  85. URL: https://www.stalam.com/eng / сайт фирмы “Stalam Radio Frequency Equipment” (дата обращения 28.03.2023).
  86. URL: https://www.strayfield.co.uk / сайт фирмы “Strayfield” (дата обращения 28.03.2023).
  87. Anas M., Zhao Y., Saed M.A., Ziegler K.J., Green M.J. Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes // Nanoscale. 2019. V. 11. № 19. P. 9617–9625. https://doi.org/10.1039/C9NR01600G
  88. Ioffe M.S., Pollington S.D., Wan J.K.S. High-power pulsed radio-frequency and microwave catalytic processes: selective production of acetylene from the reaction of methane over carbon // J. Catal. 1995. V. 151. № 2. P. 349–355. https://doi.org/10.1006/jcat.1995.1037
  89. Liu S., McDonald T., Wang Y. Producing biodiesel from high free fatty acids waste cooking oil assisted by radio frequency heating // Fuel. 2010. V. 89. № 10. P. 2735–2740. https://doi.org/10.1016/j.fuel.2010.03.011
  90. Liu S., Wang Y., McDonald T., Taylor S.E. Efficient production of biodiesel using radio frequency heating // Energy Fuels. 2008. V. 22. № 3. P. 2116–2120. https://doi.org/10.1021/ef800038g
  91. Faudot E., Devaux S., Moritz J., Heuraux S., Molina Cabrera P., Brochard F. A linear radio frequency plasma reactor for potential and current mapping in a magnetized plasma // Rev. Sci. Instrum. 2015. V. 86. № 6. P. 063502. https://doi.org/10.1063/1.4921905
  92. Ghorui S., Sahasrabudhe S., Dhamale G., Kanhe N., Mathe V., Bhoraskar S., Das A. Characteristics of synthesized alumina nanoparticles in a high-pressure radio frequency thermal plasma reactor // IEEE Trans. Plasma Sci. 2014. V. 42. № 3. P. 759–766. https://doi.org/10.1109/TPS.2014.2299871
  93. Lewis J. Decarbonising fired process heaters with zero-emission electric heat // Decarbonisation Technology. 2022. V. Nov. P. 81–86.
  94. Long D. Decarbonisation, electrification and the case for modern electric process heaters // Decarbonisation Technology. 2020. V. Jul. P. 1–4.
  95. URL: https://masterwatt.ru / сайт фирмы ООО “Мастер ВАТТ” (дата обращения 28.03.2023).
  96. URL: https://elektroteni.ru / сайт фирмы ООО “ПК Марион” (дата обращения 28.03.2023).
  97. URL: https://polymernagrev.ru / сайт фирмы ООО “Полимернагрев” (дата обращения 28.03.2023).
  98. Jones M. Electric process heaters help decarbonise petrochemical refining // Decarbonisation Technology. 2022. V. Nov. P. 75–79.
  99. URL: https://www.watlow.com / сайт фирмы “Watlow” (дата обращения 28.03.2023).
  100. URL: https://www.san-as.com / сайт фирмы “SAN Electro Heat” (дата обращения 28.03.2023).
  101. URL: https://www.tutco.com / сайт фирмы “TUTCO Heating Solution Group” (дата обращения 28.03.2023).
  102. Пилипенко А.И. Промышленные электронагреватели // Промышленный электрообогрев и электроотопление. 2012. № 1. С. 28–34.
  103. URL: https://www.watlow.com/Products/Heaters/Circulation-Heaters/HELIMAX-Heat-Exchanger / страница продукта фирмы “Watlow” (дата обращения 28.03.2023).
  104. Roux S., Courel M., Picart-Palmade L., Pain J.P. Design of an ohmic reactor to study the kinetics of thermal reactions in liquid products // J. Food Eng. 2010. V. 98. № 4. P. 398–407. https://doi.org/10.1016/j.jfoodeng.2010.01.013
  105. Wismann S.T., Engbæk J.S., Vendelbo S.B., Bendixen F.B., Eriksen W.L., Aasberg-Petersen K., Frandsen C., Chorkendorff I., Mortensen P.M. Electrified methane reforming: a compact approach to greener industrial hydrogen production // Science. 2019. V. 364. № 6442. P. 756–759. https://doi.org/10.1126/science.aaw8775
  106. Li J., Lu X., Wu F., Cheng W., Zhang W., Qin S., Wang Z., You Z. Electroplated palladium catalysts on FeCr alloy for joule-heat-ignited catalytic elimination of ethylene in air // Ind. Eng. Chem. Res. 2017. V. 56. № 44. P. 12520–12528. https://doi.org/10.1021/acs.iecr.7b03044
  107. Renda S., Cortese M., Iervolino G., Martino M., Meloni E., Palma V. Electrically driven SiC-based structured catalysts for intensified reforming processes // Catal. Today. 2022. V. 383. P. 31–43. https://doi.org/10.1016/j.cattod.2020.11.020
  108. Nie Z., Hou Y., Xie G., Cui Y., Yu X. Electric heating of the silicon rods in Siemens reactor // Int. J. Heat Mass Transfer. 2015. V. 90. P. 1026–1033. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.040
  109. Kim T., Chung D.D.L. Carbon fiber mats as resistive heating elements // Carbon. 2003. V. 41. № 12. P. 2436–2440. https://doi.org/10.1016/S0008-6223(03)00288-4
  110. Gal E., Bassen D., Bevelsdorf M., Lina M., Mennarich H., Webb R. Electrically heated reactor and process for carrying out gas reactions at a high temperature using this reactor. Patent CN № 100381200C.
  111. Burch S.D., Pettit W.H., Goebel S.G. Fuel processor primary reactor and combustor startup via electrically-heated catalyst. Patent US № 7862631B2.
  112. Mortensen P.M., Klein R., Aasberg-Petersen K. Steam reforming heated by resistance heating. Patent EP № 3801870B1.
  113. Balakotaiah V., Ratnakar R.R. Modular reactors with electrical resistance heating for hydrocarbon cracking and other endothermic reactions // AIChE J. 2022. V. 68. № 2. ID e17542. https://doi.org/10.1002/aic.17542
  114. URL: https://energynews.biz/renewable-hydrogen-production-facility-as-a-test-bed / страница ресурса “H2 Energy News” (дата обращения 09.01.2024).
  115. URL: https://www.world-energy.org/article/12675.html / страница ресурса “World-Energy” (дата обращения 09.01.2024).
  116. Rowe S.C., Hischier I., Palumbo A.W., Chubukov B.A., Wallace M.A., Viger R., Lewandowski A., Clough D.E., Weimer A.W. Nowcasting, predictive control, and feedback control for temperature regulation in a novel hybrid solar-electric reactor for continuous solar-thermal chemical processing // Sol. Energy. 2018. V. 174. P. 474–488.https://doi.org/10.1016/j.solener.2018.09.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schemes of non-contact heating installations: a) microwave; b) radio-frequency; c) induction.

Download (67KB)
3. Fig. 2. Types of microwave radiation distribution: a) multimode system; b) monomode system.

Download (89KB)

Copyright (c) 2024 Russian Academy of Sciences