Epoxidation of Olefins in the Presence of Molybdenum Catalysts based on Porous Aromatic Frameworks

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A porous aromatic framework, namely PAF-30, was structurally modified by the introduction of complexing groups based on dipyridylamine, dipicolylamine, and acetylacetone. The materials synthesized in this manner were used as supports of molybdenum catalysts for epoxidation: PAF-30-dpa-Mo, PAF-30-dpcl-Mo, and PAF-30-AA-Mo. All the materials were examined by various analytic methods, such as IR spectroscopy, low-temperature nitrogen adsorption/desorption, X-ray photoelectron spectroscopy, elemental analysis, and transmission electron microscopy. The catalytic activity was tested in epoxidation of cyclohexene, 1-hexene, 1-octene, and styrene. The reusability of the catalysts was assessed using the case of cyclohexene epoxidation.

About the authors

V. A. Yarchak

Faculty of Chemistry, Lomonosov Moscow State University

Email: yarchakvika@gmail.com
119991, Moscow, Russia

L. A. Kulikov

Faculty of Chemistry, Lomonosov Moscow State University

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. L. Maksimov

Faculty of Chemistry, Lomonosov Moscow State University; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia; 119991, Moscow, Russia

E. A. Karakhanov

Faculty of Chemistry, Lomonosov Moscow State University

Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia

References

  1. Oyama T.S. Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis - 1st Edition. Amsterdam, Elsevier, 2008. 528 p. https://doi.org/10.1016/B978-0-444-53188-9.X0001-6
  2. Shen Y., Jiang P., Wai P.T., Gu Q., Zhang W. Recent progress in application of molybdenum-based catalysts for epoxidation of alkenes // Catalysts. 2019. V. 9. № 1. P. 31-57. https://doi.org/10.3390/catal9010031
  3. Мастерс К. Гомогенный катализ переходными металлами. М.: Мир, 1983. 304 p.
  4. Esnaashari F., Moghadam M., Mirkhani V., Tangestaninejad S., Mohammadpoor-Baltork I., Khosoropour A.R., Zakeri M., Hushmandrad S. MoO2(acac)2 supported on multi-wall carbon nanotubes: highly efficient and reusable catalysts for alkene epoxidation with tert-BuOOH // Polyhedron. 2012. V. 48. № 1. P. 212-220. https://doi.org/10.1016/j.poly.2012.08.084
  5. Li T., Zhang W., Chen W., Miras H.N., Song Y.F. Modular polyoxometalate-layered double hydroxides as efficient heterogeneous sulfoxidation and epoxidation catalysts // ChemCatChem. 2018. V. 10. № 1. P. 188-197. https://doi.org/10.1002/cctc.201701056
  6. Nijhuis T.A., Makkee M., Moulijn J.A., Weckhuysen B.M. The production of propene oxide: Catalytic processes and recent developments // Industrial and Engineering Chemistry Research. 2006. V. 45. № 10. P. 3447-3459. https://doi.org/10.1021/ie0513090
  7. Bezaatpour A., Khatami S., Amiri M. Development of the catalytic reactivity of an oxo-peroxo Mo(VI) Schiff base complex supported on supermagnetic nanoparticles as a reusable green nanocatalyst for selective epoxidation of olefins // RSC Adv. 2016. V. 6. № 33. P. 27452-27459. https://doi.org/10.1039/C5RA27751E
  8. Dai P.S.E., Lunsford J.H. Catalytic properties of molybdenum zeolites in epoxidation reactions. II. Oxidation of cyclohexene // J. Catal. 1980. V. 64. № 1. P. 184-199. https://doi.org/10.1016/0021-9517(80)90491-1
  9. Eghbali P., Şahin E., Masteri-Farahani M. Immobilization of a molybdenum-glycine Schiff base complex within the nanocages of zeolite Y with flexible ligand method // J. of Porous Materials. 2017. V. 24. № 1. P. 39-44. https://doi.org/10.1007/s10934-016-0234-8
  10. Shen Y., Jiang P., Zhang J., Bian G., Zhang P., Dong Y., Zhang W. Highly dispersed molybdenum incorporated hollow mesoporous silica spheres as an efficient catalyst on epoxidation of olefins // Molecular Catalysis. 2017. V. 433. P. 212-223. https://doi.org/10.1016/j.mcat.2016.12.011
  11. Jia M., Seifert A., Thiel W.R. Sol-gel synthesis of oxodiperoxo molybdenum-modified organic-inorganic materials for the catalytic epoxidation of cyclooctene // J. Catal. 2004. V. 221. № 2. P. 319-324. https://doi.org/10.1016/j.jcat.2003.07.009
  12. Shen Y., Jiang P., Wang Y., Bian G., Wai P.T., Dong Y. MoO3@SiO2 nanoreactors: Synthesis with a thermal decomposition strategy and catalysis on alkenes epoxidation // J. Solid State Chem. 2018. V. 264. P. 156-164. https://doi.org/10.1016/j.jssc.2018.05.005
  13. Noh H., Cui Y., Peters A.W., Pahls D.R., Ortuno M.A., Vermeulen N.A., Cramer C.J., Gagliardi L., Hupp J.T., Farha O.K. An exceptionally stable metal-organic framework supported molybdenum(VI) oxide catalyst for cyclohexene epoxidation // J. Am. Chem. Soc. 2016. V. 138. № 44. P. 14720-14726. https://doi.org/10.1021/jacs.6b08898
  14. Tang J., Dong W., Wang G., Yao Y., Cai L., Liu Y., Zhao X., Xu J., Tan L. Efficient molybdenum(VI) modified Zr-MOF catalysts for epoxidation of olefins // RSC Adv. 2014. Vol. 4. № 81. P. 42977-42982. https://doi.org/10.1039/c4ra07133f
  15. Hlatshwayo X.S., Xaba M.S., Ndolomingo M.J., Bingwa N., Meijboom R. The efficient recyclable molybdenum- and tungsten-promoted mesoporous ZrO2 catalysts for aminolysis of epoxides // Catalysts. 2021. V. 11. № 6. P. 673-685. https://doi.org/10.3390/catal11060673
  16. Tangestaninejad S., Habibi M.H., Mirkhani V., Moghadam M., Grivani G. Readily prepared polymer-supported molybdenum carbonyls as novel reusable and highly active epoxidation catalysts // Inorg. Chem. Commun. 2006. V. 9. № 6. P. 575-578. https://doi.org/10.1016/j.inoche.2006.03.001
  17. Sherrington D.C., Simpson S. Polymer-supported Mo alkene epoxidation catalysts // Reactive Polymers. 1993. V. 19. № 1-2. P. 13-25. https://doi.org/10.1016/0923-1137(93)90007-3
  18. Miller M.M., Sherrington D.C. Alkene epoxidations catalyzed by Mo(VI) supported on imidazole-containing polymers: II. Recycling of polybenzimidazole-supported Mo(VI) in the epoxidation of cyclohexene // J. Catal. 1995. V. 152. № 2. P. 377-383. https://doi.org/10.1006/jcat.1995.1092
  19. Gao B., Men J., Zhang Y. Selective epoxidation of cyclohexene catalyzed by new bidentate schiff base dioxomolybdenum(VI) complex immobilized on crosslinked polystyrene microspheres // Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry. 2015. V. 45. № 6. P. 821-827. https://doi.org/10.1080/15533174.2013.843556
  20. Mbeleck R., Ambroziak K., Saha B., Sherrington D.C. Stability and recycling of polymer-supported Mo(VI) alkene epoxidation catalysts // React. Funct. Polym. 2007. V. 67. № 12 SPEC. ISS. P. 1448-1457. https://doi.org/10.1016/j.reactfunctpolym.2007.07.024
  21. Chang Y., Lv Y., Lu F., Zha F., Lei Z. Efficient allylic oxidation of cyclohexene with oxygen catalyzed by chloromethylated polystyrene supported tridentate Schiff-base complexes // J. Mol. Catal. A: Chem. 2010. V. 320. № 1-2. P. 56-61. https://doi.org/10.1016/j.molcata.2010.01.003
  22. Куликов Л.А., Ярчак В.А., Золотухина А.В., Максимов А.Л., Караханов Е.А. Катализаторы эпоксидирования циклогексена на основе пористых ароматических каркасов // Нефтехимия. 2020. Т. 60. № 5. P. 701-707
  23. Kulikov L.A., Yarchak V.A., Zolotukhina A.V., Maksimov A.L., Karakhanov E.A. Cyclohexene epoxidation catalysts based on porous aromatic frameworks // Petrol. Chemistry. 2020. V. 60. № 9. P. 1087-1093. https://doi.org/10.1134/S0965544120090169.
  24. Yuan Y., Sun F., Ren H., Jing X., Wang W., Ma H., Zhao H., Zhu G. Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules // J. Mater. Chem. 2011. V. 21. № 35. P. 13498-13502. https://doi.org/10.1039/c1jm11998b
  25. Kulikov L., Kalinina M., Makeeva D., Maximov A., Kardasheva Y., Terenina M., Karakhanov E. Palladium catalysts based on porous aromatic frameworks, modified with ethanolamino-groups, for hydrogenation of alkynes, alkenes and dienes // Catalysts. 2020. V. 10. № 10. P. 1-17. https://doi.org/10.3390/catal10101106
  26. Kratz M.R., Hendricker D.G. Preparation of polymer-bound 2,2′-dipyridylamine and some of its transition metal complexes // Polymer (Guildf). 1986. V. 27. № 10. P. 1641-1643. https://doi.org/10.1016/0032-3861(86)90117-5
  27. Thorat K.G., Kamble P., Ray A.K., Sekar N. Novel pyrromethene dyes with N-ethyl carbazole at the meso position: a comprehensive photophysical, lasing, photostability and TD-DFT study // Physical Chemistry Chemical Physics. 2015. V. 17. № 26. P. 17221-17236. https://doi.org/10.1039/c5cp01741f
  28. Tangestaninejad S., Moghadam M., Mirkhani V., Mohammadpoor-Baltork I., Ghani K. MoO2(acac)2 supported on MCM-41: An efficient and reusable catalyst for alkene epoxidation with tert-BuOOH // J. of the Iranian Chem. Soc. 2008. V. 5. № SUPPL. 1. P. 71-79. https://doi.org/10.1007/bf03246492
  29. Mirzaee M., Bahramian B., Gholizadeh J., Feizi A., Gholami R. Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes // Chem. Engineering J. 2017. V. 308. P. 160-168. https://doi.org/10.1016/j.cej.2016.09.055
  30. Tan Z., Qian D., Zhang W., Li L., Ding Y., Xu Q., Wang F., Li Y. Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer // J. Mater. Chem. A: Mater. 2012. V. 1. № 3. P. 657-664. https://doi.org/10.1039/C2TA00325B
  31. Tahmasebi N., Khalildashti M. Synthesis of MoOx nanostructures with the assistance of polymeric surfactants for dye removal from water // Korean J. Chem. Eng. 2020. V. 37. № 3. P. 448-455. https://doi.org/10.1007/s11814-019-0469-6
  32. Jing L.P., Sun J.S., Sun F., Chen P., Zhu G. Porous aromatic framework with mesopores as a platform for a super-efficient heterogeneous Pd-based organometallic catalysis // Chem. Sci. 2018. V. 9. № 14. P. 3523-3530. https://doi.org/10.1039/C8SC00510A
  33. Zhang Q., Yang Y., Zhang S. Novel functionalized microporous organic networks based on triphenylphosphine // Chem. Eur. J. 2013. V. 19. № 30. P. 10024-10029. https://doi.org/10.1002/chem.201300334
  34. Hong M., Yao M.Y., Pan H. An immobilized molybdenum acetylacetonate complex on expanded starch for the epoxidation of stillingia oil // RSC Adv. 2015. V. 5. № 111. P. 91558-91563. https://doi.org/10.1039/c5ra14581c
  35. Zhang Z., Liu B., Lv K., Sun J., Deng K. Aerobic oxidation of biomass derived 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalyzed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex // Green Chemistry. 2014. V. 16. № 5. P. 2762-2770. https://doi.org/10.1039/C4GC00062E
  36. Shen K., Liu X., Lu G., Miao Y., Guo Y., Wang Y., Guo Y. Lewis acid property and catalytic performance of MoO3/SiO2 for propylene epoxidation by CHP: Effects of precipitant pH value and rare earth additive // J. Mol. Catal. A: Chem. 2013. V. 373. P. 78-84. https://doi.org/10.1016/J.MOLCATA.2013.02.020

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences