Synthesis of New Hydrazone Compounds from Natural Grease and Investigation as Flow Improver for Crude Oil

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

n this work, salicylaldehyde hydrazone (SAH), different from the traditional polymers, was synthesized from natural oils (castor, SAСH, rapeseed, SARH and soybean, SASH), hydrazine hydrate and salicylaldehyde. Firstly, natural grease reacts with hydrazine hydrate to produce hydrazide, and then salicylaldehyde reacts with hydrazide to synthesis salicylaldehyde hydrazone. In this work, SAH were evaluated as viscosity-reducers and pour point depressors for crude oil. The results show that the SAH can significantly reduce the pour point and viscosity of crude oil, with the increase of crude oil fluidity, the viscosity reduction rate of сrude oil from Jinghe Oilfield (QHO) reaches to 80.1% (40°С), the pour point decreases by 12.1°С, the viscosity reduction rate of сrude oil from Xinjiang Oilfield (STO) reaches to 87.5% (15°С), and the pour point decreases by 6.2°С. Based on the efficiency of different SAH, structure-function relationship was discussed. The mechanism of SAH effecting on crude oil is that the long alkyl chain is conducive to inhibiting the growth of crystals when eutectic with wax nuclei in heavy oil, and plays the role of pour point and viscosity reduction.

作者简介

Zhang Shu

Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University

Email: petrochem@ips.ac.ru
710065, Xi’an, China

Wang Longyu

Gas Production Plant, Changqing Oilfield Company, PetroChina

Email: petrochem@ips.ac.ru
017300, Inner Mongolia Autonomous, China

Cao Pengzhang

Changqing Oilfield Technical Monitoring Center, Changqing Oilfield Company

Email: petrochem@ips.ac.ru
710068, Xi’an, China

Gu Xuefan

Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University

Email: petrochem@ips.ac.ru
710065, Xi’an, China

Zhang Huani

Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University

Email: petrochem@ips.ac.ru
710065, Xi’an, China

Chen Gang

Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi’an Shiyou University

编辑信件的主要联系方式.
Email: gangchen@xsyu.edu.cn
710065, Xi’an, China

参考

  1. Chen G., Zhou Z.C., Shi X.D., Zhang X.L., Dong S.B., Zhang J. Synthesis of alkylbenzenesulfonate and its behavior as flow improver in crude oil // Fuel. 2021. V. 288, P. 119644. https://doi.org/10.1016/j.fuel.2020.119644
  2. Zheng J.F., Zhang Y.X., Wang S.Q., Yang X.-M., Bai S.-T., Wang J., Zhang F., Zhang G.-L., Liu F.A. Studies on synthesis of novel chiral organocatalysts and its evaluations for asymmetric direct aldol reactions // Acta Chimica Sinica. 2007. V. 65. P. 553-556. https://doi.org/10.3321/j.issn:0567-7351.2007.06.013
  3. Chen F., He J., Guo P., Xu Y., Zhong C. Use CO2 soluble surfactant to decrease the minimum miscibility pressure of CO2 flooding in oil reservoir // Adv. Mat. Res. 2011. V. 236. P. 2650-2654. https://doi.org/10.4028/www.scientific.net/AMR.239-242.2650
  4. Yan Y.L., He F., Zhang J.M., Qu C.T. Stability of colloidal gas foam prepared by a single nonionic surfactant // Chem. J. Chinese Univ. 2008. V. 29. P. 2044-2048. https://doi.org/10.3321/j.issn:0251-0790.2008.10.028
  5. Chen G., Lin J., Hu W.M., Cheng C., Gu X.F., Du W.C., Zhang J., Qu C.T. Characteristics of a crude oil composition and its in situ waxing inhibition behavior // Fuel. 2018. V. 218. P. 213-217. https://doi.org/10.1016/j.fuel.2017.12.116
  6. Gu X.F., Li Y.F., Yan J., Zhang J., Wu Y., Wang M.X., Zhao J.S., Chen G. Synthesis and investigation of a spiro diborate as a clean viscosity-reducer and pour point depressor for crude oil // Petrol. Chemistry. 2019. V. 56. P. 570-574. https://doi.org/10.1134/S0965544119060161
  7. Zhang J., Guo Z., Du W.C., Gu X.F., Wang M.X., Zhang Z.F., Du B.W., Chen G. Preparation and performance of vegetable oils fatty acids hydroxylmethyl triamides as crude oil flow improvers // Petrol. Chemistry. 2018. V. 58. P. 1070-1075. https://doi.org/10.1134/S0965544118120046
  8. Nomoev A.V., Torhov N.A., Khartaeva E.Ch., Syzrantsev V.V., Yumozhapova N.V., Tsyrenova M.A., Mankhirov V.N. Special aspects of the thermodynamics of formation and polarisation of Ag/Si nanoparticles // Chem. Physics. Lett. 2019. V. 720. P. 113-118. https://doi.org/10.1016/j.cplett.2019.02.015
  9. Zhao M., Wu D., Wang J. Microemulsion formation of petroleum sulfonate flooding system and solubilization properties // Sci. Technol. Eng. 2015. V. 15. P. 144-150. https://doi.org/10.3969/j.issn.1671-1815.2015.28.027
  10. Cao G.Q., Zhou J., Lu Y.B., Zhang H. Study on the oil displacement efficiency of the new surfactant // Appl. Chem. Ind. 2013. V. 42. P. 2045-2047. https://doi.org/10.16581/j.cnki.issn1671-3206.2013.11.042
  11. Eseva E.A., Akopyan A.V., Sinikova N.A., Anisimov A.V. In situ generated organic peroxides in oxidative desulfurization of naphtha reformate // Petrol. Chemistry. 2021. V. 61. P. 472-482. https://doi.org/10.1134/S0965544121050133
  12. Zhang J., Yang L., Zhang Y., Mechanism and direction analysis of liquid surface tension // China Petroleum and Chemical Standard and Quality. 2012. V. 32. № 5. P. 73-74. https://doi.org/10.3969/j.issn.1673-4076.2012.05.064
  13. Pinklesh A., Rakhi S., Geetha S., Ajay K.T. Synthesis, properties and applications of anionic phosphate ester surfactants: A review // Tenside Surfact. Det. 2018. V. 55. P. 266-272. https://doi.org/10.3139/113.110570
  14. Chen G., Yuan W.H., Zhang F., Gu X.F., Du W.C., Zhang J., Li J.L., Qu C.T. Application of polymethacrylate from waste organic glass as a pour point depressor in heavy crude oil // J. Petrol. Sci. Eng. 2018. V. 165. P. 1049-1053. https://doi.org/10.1016/j.petrol.2017.12.041
  15. Gu X.F., Zhang F., Li Y.F., Zhang J., Chen S.J., Qu C.T., Chen G. Investigation of cationic surfactants as clean flow improvers for crude oil and a mechanism study // J. Petrol. Sci. Eng. 2018. V. 164. P. 87-90. https://doi.org/10.1016/j.petrol.2018.01.045
  16. Zhang J., Yang C.C., Tang Y. Study of influence of the surfactant type on the measurement of spinning drop interfacial tension // Petrochem. Industry Application. 2012. V. 31. № 6. P. 58-60. https://doi.org/10.3969/j.issn.1673-5285.2012.06.018
  17. Wang Y., Wang C., Niu Z.X., Sun C.J., Wang H. Screening and evaluation of the W-101 in foam flooding // J. Petrochem. Univ. 2013. V. 26. № 5, P. 50-54. https://doi.org/10.3969/j.issn.1006-396X.2013.05.012
  18. Peng Z.L., Zeng H. Synthesis, surface activity and application properties of a novel ethoxylated gemini trisiloxane surfactant // Tenside Surf. Det. 2016. V. 53. P. 127-133. https://doi.org/10.3139/113.110417
  19. Novitskii E.G., Bazhenov S.D., Volkov A.V. Optimization of methods for purification of gas mixtures to remove carbon dioxide // Petrol. Chemistry. 2021. V. 61. P. 407-423. https://doi.org/10.1134/S096554412105011X
  20. Rodríguez-López L., Rincón-Fontán M., Vecino X., Cruz J.M., Belén Moldes A. Biological surfactants vs. polysorbates: comparison of their emulsifier and surfactant properties // Tenside. Surf. Det. 2018. V. 55. P. 273-280. https://doi.org/10.3139/113.110574

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023