Synthesis of New Hydrazone Compounds from Natural Grease and Investigation as Flow Improver for Crude Oil
- 作者: Shu Z.1, Longyu W.2, Pengzhang C.3, Xuefan G.1, Huani Z.1, Gang C.4
-
隶属关系:
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University
- Gas Production Plant, Changqing Oilfield Company, PetroChina
- Changqing Oilfield Technical Monitoring Center, Changqing Oilfield Company
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi’an Shiyou University
- 期: 卷 63, 编号 3 (2023)
- 页面: 354-362
- 栏目: Articles
- URL: https://rjpbr.com/0028-2421/article/view/655613
- DOI: https://doi.org/10.31857/S0028242123030061
- EDN: https://elibrary.ru/JBSDIH
- ID: 655613
如何引用文章
详细
n this work, salicylaldehyde hydrazone (SAH), different from the traditional polymers, was synthesized from natural oils (castor, SAСH, rapeseed, SARH and soybean, SASH), hydrazine hydrate and salicylaldehyde. Firstly, natural grease reacts with hydrazine hydrate to produce hydrazide, and then salicylaldehyde reacts with hydrazide to synthesis salicylaldehyde hydrazone. In this work, SAH were evaluated as viscosity-reducers and pour point depressors for crude oil. The results show that the SAH can significantly reduce the pour point and viscosity of crude oil, with the increase of crude oil fluidity, the viscosity reduction rate of сrude oil from Jinghe Oilfield (QHO) reaches to 80.1% (40°С), the pour point decreases by 12.1°С, the viscosity reduction rate of сrude oil from Xinjiang Oilfield (STO) reaches to 87.5% (15°С), and the pour point decreases by 6.2°С. Based on the efficiency of different SAH, structure-function relationship was discussed. The mechanism of SAH effecting on crude oil is that the long alkyl chain is conducive to inhibiting the growth of crystals when eutectic with wax nuclei in heavy oil, and plays the role of pour point and viscosity reduction.
作者简介
Zhang Shu
Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University
Email: petrochem@ips.ac.ru
710065, Xi’an, China
Wang Longyu
Gas Production Plant, Changqing Oilfield Company, PetroChina
Email: petrochem@ips.ac.ru
017300, Inner Mongolia Autonomous, China
Cao Pengzhang
Changqing Oilfield Technical Monitoring Center, Changqing Oilfield Company
Email: petrochem@ips.ac.ru
710068, Xi’an, China
Gu Xuefan
Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University
Email: petrochem@ips.ac.ru
710065, Xi’an, China
Zhang Huani
Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University
Email: petrochem@ips.ac.ru
710065, Xi’an, China
Chen Gang
Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi’an Shiyou University
编辑信件的主要联系方式.
Email: gangchen@xsyu.edu.cn
710065, Xi’an, China
参考
- Chen G., Zhou Z.C., Shi X.D., Zhang X.L., Dong S.B., Zhang J. Synthesis of alkylbenzenesulfonate and its behavior as flow improver in crude oil // Fuel. 2021. V. 288, P. 119644. https://doi.org/10.1016/j.fuel.2020.119644
- Zheng J.F., Zhang Y.X., Wang S.Q., Yang X.-M., Bai S.-T., Wang J., Zhang F., Zhang G.-L., Liu F.A. Studies on synthesis of novel chiral organocatalysts and its evaluations for asymmetric direct aldol reactions // Acta Chimica Sinica. 2007. V. 65. P. 553-556. https://doi.org/10.3321/j.issn:0567-7351.2007.06.013
- Chen F., He J., Guo P., Xu Y., Zhong C. Use CO2 soluble surfactant to decrease the minimum miscibility pressure of CO2 flooding in oil reservoir // Adv. Mat. Res. 2011. V. 236. P. 2650-2654. https://doi.org/10.4028/www.scientific.net/AMR.239-242.2650
- Yan Y.L., He F., Zhang J.M., Qu C.T. Stability of colloidal gas foam prepared by a single nonionic surfactant // Chem. J. Chinese Univ. 2008. V. 29. P. 2044-2048. https://doi.org/10.3321/j.issn:0251-0790.2008.10.028
- Chen G., Lin J., Hu W.M., Cheng C., Gu X.F., Du W.C., Zhang J., Qu C.T. Characteristics of a crude oil composition and its in situ waxing inhibition behavior // Fuel. 2018. V. 218. P. 213-217. https://doi.org/10.1016/j.fuel.2017.12.116
- Gu X.F., Li Y.F., Yan J., Zhang J., Wu Y., Wang M.X., Zhao J.S., Chen G. Synthesis and investigation of a spiro diborate as a clean viscosity-reducer and pour point depressor for crude oil // Petrol. Chemistry. 2019. V. 56. P. 570-574. https://doi.org/10.1134/S0965544119060161
- Zhang J., Guo Z., Du W.C., Gu X.F., Wang M.X., Zhang Z.F., Du B.W., Chen G. Preparation and performance of vegetable oils fatty acids hydroxylmethyl triamides as crude oil flow improvers // Petrol. Chemistry. 2018. V. 58. P. 1070-1075. https://doi.org/10.1134/S0965544118120046
- Nomoev A.V., Torhov N.A., Khartaeva E.Ch., Syzrantsev V.V., Yumozhapova N.V., Tsyrenova M.A., Mankhirov V.N. Special aspects of the thermodynamics of formation and polarisation of Ag/Si nanoparticles // Chem. Physics. Lett. 2019. V. 720. P. 113-118. https://doi.org/10.1016/j.cplett.2019.02.015
- Zhao M., Wu D., Wang J. Microemulsion formation of petroleum sulfonate flooding system and solubilization properties // Sci. Technol. Eng. 2015. V. 15. P. 144-150. https://doi.org/10.3969/j.issn.1671-1815.2015.28.027
- Cao G.Q., Zhou J., Lu Y.B., Zhang H. Study on the oil displacement efficiency of the new surfactant // Appl. Chem. Ind. 2013. V. 42. P. 2045-2047. https://doi.org/10.16581/j.cnki.issn1671-3206.2013.11.042
- Eseva E.A., Akopyan A.V., Sinikova N.A., Anisimov A.V. In situ generated organic peroxides in oxidative desulfurization of naphtha reformate // Petrol. Chemistry. 2021. V. 61. P. 472-482. https://doi.org/10.1134/S0965544121050133
- Zhang J., Yang L., Zhang Y., Mechanism and direction analysis of liquid surface tension // China Petroleum and Chemical Standard and Quality. 2012. V. 32. № 5. P. 73-74. https://doi.org/10.3969/j.issn.1673-4076.2012.05.064
- Pinklesh A., Rakhi S., Geetha S., Ajay K.T. Synthesis, properties and applications of anionic phosphate ester surfactants: A review // Tenside Surfact. Det. 2018. V. 55. P. 266-272. https://doi.org/10.3139/113.110570
- Chen G., Yuan W.H., Zhang F., Gu X.F., Du W.C., Zhang J., Li J.L., Qu C.T. Application of polymethacrylate from waste organic glass as a pour point depressor in heavy crude oil // J. Petrol. Sci. Eng. 2018. V. 165. P. 1049-1053. https://doi.org/10.1016/j.petrol.2017.12.041
- Gu X.F., Zhang F., Li Y.F., Zhang J., Chen S.J., Qu C.T., Chen G. Investigation of cationic surfactants as clean flow improvers for crude oil and a mechanism study // J. Petrol. Sci. Eng. 2018. V. 164. P. 87-90. https://doi.org/10.1016/j.petrol.2018.01.045
- Zhang J., Yang C.C., Tang Y. Study of influence of the surfactant type on the measurement of spinning drop interfacial tension // Petrochem. Industry Application. 2012. V. 31. № 6. P. 58-60. https://doi.org/10.3969/j.issn.1673-5285.2012.06.018
- Wang Y., Wang C., Niu Z.X., Sun C.J., Wang H. Screening and evaluation of the W-101 in foam flooding // J. Petrochem. Univ. 2013. V. 26. № 5, P. 50-54. https://doi.org/10.3969/j.issn.1006-396X.2013.05.012
- Peng Z.L., Zeng H. Synthesis, surface activity and application properties of a novel ethoxylated gemini trisiloxane surfactant // Tenside Surf. Det. 2016. V. 53. P. 127-133. https://doi.org/10.3139/113.110417
- Novitskii E.G., Bazhenov S.D., Volkov A.V. Optimization of methods for purification of gas mixtures to remove carbon dioxide // Petrol. Chemistry. 2021. V. 61. P. 407-423. https://doi.org/10.1134/S096554412105011X
- Rodríguez-López L., Rincón-Fontán M., Vecino X., Cruz J.M., Belén Moldes A. Biological surfactants vs. polysorbates: comparison of their emulsifier and surfactant properties // Tenside. Surf. Det. 2018. V. 55. P. 273-280. https://doi.org/10.3139/113.110574
补充文件
