The Hildebrand Solubility Parameter and Its Importance in the Scientific and Technological Scenario of Flow Assurance Operations
- Authors: Zalamena G.1, Lopes T.J.2, Lucas E.F.3, Ramos A.C.4
-
Affiliations:
- Universidade Federal do Rio Grande – Campus Carreiros, Escola de Química e Alimentos
- Universidade Federal do Rio Grande – Unidade Cidade Alta, Escola de Química e Alimentos
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas
- Universidade Federal de Pelotas, Centro de Engenharias
- Issue: Vol 63, No 4 (2023)
- Pages: 471-484
- Section: Articles
- URL: https://rjpbr.com/0028-2421/article/view/655594
- DOI: https://doi.org/10.31857/S0028242123040020
- EDN: https://elibrary.ru/OJAVDS
- ID: 655594
Cite item
Abstract
The Hildebrand solubility parameter has been applied in several areas of science and engineering, assuming a relevant role in new scientific developments and practical applications in industry. This review shows its importance and relationship with development of research in flow assurance activities, especially involving heavy fractions of oils such as asphaltenes, resins and wax. The examples described illustrate its relevance and scope in the approaches of interest of flow assurance. They also show that it is a versatile property for many new applications, including the development of methodologies to obtain more reliable values for the various petroleum fluids and theoretical developments for its estimation in a wide range of temperature and pressure.
About the authors
Gabriela Zalamena
Universidade Federal do Rio Grande – Campus Carreiros, Escola de Química e Alimentos
Email: petrochem@ips.ac.ru
96203-000, Rio Grande, Brazil
Toni J. Lopes
Universidade Federal do Rio Grande – Unidade Cidade Alta, Escola de Química e Alimentos
Email: petrochem@ips.ac.ru
95500-000, Santo Antônio da Patrulha, Brazil
Elizabete F. Lucas
Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas
Email: petrochem@ips.ac.ru
21941598, Rio de Janeiro, Brazil
Ant�nio C. S. Ramos
Universidade Federal de Pelotas, Centro de Engenharias
Author for correspondence.
Email: ramosacs@gmail.com
96010-440, Pelotas, Brazil
References
- Hildebrand J.H., Scott R. The solubility of nonelectrolytes. Reinhold Pub. Corp. New York, 1950.
- Prausnitz J.M., Lichtenthaler R.N., Azevedo E.G. Molecular Thermodynamics of Fluid Phase Equilibria. 3rd ed. Prentice Hall PTR. New Jersey, 1999.
- Hansen C.M. 50 Years with solubility parameters-past and future // Prog. Org. Coat. 2004. V. 51. P. 77-84. https://doi.org/10.1016/j.porgcoat.2004.05.004
- Alavianmehr M.M., Hosseini S.M., Akbari F., Moghadasi J. Predicting solubility parameter of molecular fluids // J. Molecular Liq. 2015. V. 211. P. 560-566. https://doi.org/10.1016/j.molliq.2015.07.068
- Rai N., Wagner A.J., Ross R.B., Siepmann J.I. Application of the TraPPE force field for predicting the Hildebrand solubility parameters of organic solvents and monomer units // J. Chem. Theory Comp. 2008. V. 4. P. 136-144. https://doi.org/10.1021/ct700135j
- Bustamante P., Navarro-Lupión J., Peña M.A., Escalera B. Hildebrand solubility parameter to predict drug release from hydroxypropyl methylcellulose gels // Int. J. Pharm. 2011. V. 414. P. 125-130. https://doi.org/10.1016/j.ijpharm.2011.05.011
- Gharagheizi F., Eslamimanesh A., Mohammadi A., Richon D. Group contribution-based method for determination of solubility parameter of nonelectrolyte organic compounds // Ind. Eng. Chem. Res. 2011. V. 50. P. 10344-10349. https://doi.org/10.1021/ie201002e
- Code J.E., Holder A.J., Eick J.D. Direct and indirect quantum mechanical QSPR Hildebrand solubility parameter models // QSAR Comb. Sci. 2008. V. 27. P. 841-849. https://doi.org/10.1002/qsar.200710158
- Alavianmehr M.M., Hosseini S.M., Mohsenipour A.A., Moghadasi J. Further property of ionic liquids: Hildebrand solubility parameter from new molecular thermodynamic model // J. Molecular Liq. 2016. V. 218. P. 332-341. https://doi.org/10.1016/j.molliq.2016.02.032
- Östlund J.A., Löfroth J.E., Holmberg K., Nyden M. Flocculation behavior of asphaltenes in solvent/nonsolvent systems // J. Colloid Interface Sci. 2002. V. 253. P. 150-158. https://doi.org/10.1006/jcis.2002.8516
- Angle C.W., Long Y., Hamza H., Lue L. Precipitation of asphaltenes from solvent-diluted heavy oil and thermodynamic properties of solvent-diluted heavy oil solutions // Fuel. 2006. V. 85. P. 492-506. https://doi.org/10.1016/j.fuel.2005.08.009
- Fossen M., Kallevik H., Knudsen K., Sjöblom J. Asphaltenes precipitated by a two-step precipitation procedure. 2. Physical and chemical characteristics // Energy Fuels. 2011. V. 25. P. 3552-3567. https://doi.org/10.1021/ef200373v
- Ramos A.C.S., Rolemberg M.P., Moura L.G.M., Zilio E.L., Santos M.F.P., González G. Determination of solubility parameters of oils and prediction of oil compatibility // J. Petrol. Sci. Eng. 2013. V. 102. P. 36-40. https://doi.org/10.1016/j.petrol.2013.01.008
- Aguiar J.I.S., Garreto M.S.E., González G., Lucas E.F., Mansur C.R.E. Microcalorimetry as a new technique for experimental study of solubility parameters of crude oil and asphaltenes // Energy Fuels. 2014. V. 28. P. 409-416. https://doi.org/10.1021/ef4010576
- Alcázar-Vara L.A., Zamudio-Rivera L.S., Buenrostro-González E. Effect of asphaltenes and resins on asphaltene aggregation inhibition, rheological behaviour and waterflood oil-recovery // J. Disp. Sci. Technol. 2016. V. 37. P. 1544-1554. https://doi.org/10.1080/01932691.2015.1116082
- Santos D.C., Filipakis S.D., Lima E.R.A., Paredes M.L.L. Solubility parameter of oils by several models and experimental oil compatibility data: implications for asphaltene stability // Petrol. Sci. Technol. 2019. V. 37. P. 1596-1602. https://doi.org/10.1080/10916466.2019.1594288
- Nguyen N.T., Kang K.H., Seo P.W., Kang N., Pahm D.V., Kim G.T., Park S. Hydrocracking of C5-deasphalted oil: Effects of H2 and dispersed catalysts // Pet. Chem. 2021. V. 61. P. 172-182. https://doi.org/10.1134/S0965544121020171
- Kraiwattanawong K., Fogler H.S., Gharfeh S.G., Singh P., Thomason W.H., Chavadej S. Thermodynamic solubility models to predict asphaltene instability in live crude oils // Energy Fuels. 2007. V. 21. P. 1248-1255. https://doi.org/10.1021/ef060386k
- Johansson B., Friman R., Hakanpää-Laitinen H., Rosenholm J.B. Solubility and interaction parameters as references for solution properties II. Precipitation and aggregation of asphaltene in organic solvents // Adv. Colloid Interface Sci. 2009. V. 147-148. P. 132-143. https://doi.org/10.1016/j.cis.2008.09.013
- Dooher T., Dixon D. Multiwalled carbon nanotube/polysulfone composites: Using the Hildebrand solubility parameter to predict dispersion // Polym. Compos. 2011. V. 32. P. 1895-1903. https://doi.org/10.1002/pc.21222
- Niederquell A., Wyttenbach N., Kuentz M. New prediction methods for solubility parameters based on molecular sigma profiles using pharmaceutical materials // Int. J. Pharm. 2018. V. 546. P. 137-144. https://doi.org/10.1016/j.ijpharm.2018.05.033
- Verdier S., Andersen S.I. Internal pressure and solubility parameter as a function of pressure // Fluid Phase Equilib. 2005. V. 231. P. 125-137. https://doi.org/10.1016/j.fluid.2005.01.009
- Carvalho S.P., Lucas E.F., González G., Spinelli L.S. Determining Hildebrand solubility parameter by ultraviolet spectroscopy and microcalorimetry // J. Braz. Chem. Soc. 2013. V. 24. P. 1998-2007. https://doi.org/10.5935/0103-5053.20130250
- Aske N., Orr R., Sjöblom J., Kallevik H., Oye G. Interfacial properties of water-crude oil systems using the oscillating pendant drop. Correlations to asphaltene solubility by near infrared spectroscopy // J. Dispers. Sci. Technol. 2004. V. 25. P. 263-275. https://doi.org/10.1081/DIS-120037694
- Sultanov F.R., Tileuberdi Y., Ongarbayev Y.K., Mansurov Z.A., Khasseinov K.A., Tuleutave B.K., Behrendt F. Study of asphaltene structure precipitated from oil sands // Eurasian Chem.-Technol. J. 2013. V. 15. P. 77-81. https://doi.org/10.18321/ectj143
- Enayat S., Babu N.R., Kuang J., Rezaee S., Lu H., Tavakkoli M., Wang J., Vargas F.M. On the development of experimental methods to determine the rates of asphaltene precipitation, aggregation, and deposition // Fuel. 2020. V. 260. P. 116250. https://doi.org/10.1016/j.fuel.2019.116250
- Evdokimov I.N., Losev A. On the nature of UV/vis absorption spectra of asphaltenes // Petrol. Sci. Technol. 2007. V. 25. P. 55-66. https://doi.org/10.1080/10916460601186420
- Marcano F., Moura L.G.M., Cardoso F.M.R., Rosa P.T.V. Evaluation of the chemical additive effect on asphaltene aggregation in dead oils: A comparative study between Ultraviolet-visible and near-infrared-laser light scattering techniques // Energy Fuels. 2015. V. 29. P. 2813-2822. https://doi.org/10.1021/ef502071t
- Oliveira M.L.N., Malagoni R.A., Franco M.R. Solubility of citric acid in water, ethanol, n-propanol and in mixtures of ethanol+water // Fluid Phase Equilib. 2013. V. 352. P. 110-113. https://doi.org/10.1016/j.fluid.2013.05.014
- Moncada L., Schartung D., Stephens N., Oh T., Carrero C.A. Determining the flocculation point of asphaltenes combining ultrasound and electrochemical impedance spectroscopy // Fuel. 2019. V. 241. P. 870-875. https://doi.org/10.1016/j.fuel.2018.12.102
- Bielicka-Daszkiewicz K., Voelkel A., Pietrzynska M., Héberger K. Role of Hansen solubility parameters in solid phase extraction // J. Chromatogr. A. 2010. V. 1217. P. 5564-5570. https://doi.org/10.1016/j.chroma.2010.06.066
- Goodarzi M., Duchowicz P.R., Freitas M.P., Fernández F.M. Prediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches // Fluid Phase Equilib. 2010. V. 293. P. 130-136. https://doi.org/10.1016/j.fluid.2010.02.025
- Sánchez-Lemus M.C., Schoeggl F., Taylor S.D., Mahnel T., Vrbka P., Růžička K., Fulem M., Yarranton H.W. Vapor pressure and thermal properties of heavy oil distillation cuts // Fuel. 2016. V. 181. P. 503-521. https://doi.org/10.1016/j.fuel.2016.04.143
- Hansen C.M. Hansen Solubility Paramethers - A User's Handbook. Taylor & Francis Group, Oxfordshire, 2007.
- Yu W., Hou W. Correlations of surface free energy and solubility parameters for solid substances // J. Colloid Interface Sci. 2019. V. 544. P. 8-13. https://doi.org/10.1016/j.jcis.2019.02.074
- Velasco P.Q., Porfyrakis K., Grobert N. The application of the surface energy based solubility parameter theory for the rational design of polymer-functionalized MWCNTs // Phys. Chem. Chem. Phys. 2019. V. 21. P. 5331-5334. https://doi.org/10.1039/c8cp07411a
- Cai Y., Yan W., Peng X., Liang M., Yu L., Zou H. Influence of solubility parameter difference between monomer and porogen on structures of poly (acrylonitrile-styrene-divinylbenzene) resins // J. Appl. Polym. Sci. 2018. V. 136. P. 46979. https://doi.org/10.1002/APP.46979
- He Q., Liu J., Liang J., Liu X., Tuo D., Li W. Chemically surface tunable solubility parameter for controllable drug delivery-An example and perspective from hollow PAA-coated magnetite nanoparticles with R6G model drug // Materials. 2018. V. 11. P. 247. https://doi.org/10.3390/ma11020247
- Sotomayor R.G., Holguín A.R., Cristancho D.M., Delgado D.R., Martínez F. Extended Hildebrand Solubility Approach applied to piroxicam in ethanol + water mixtures // J. Mol. Liq. 2013. V. 180. P. 34-38. https://doi.org/10.1016/j.molliq.2012.12.028
- Cárdenas Z.J., Jiménez D.M., Delgado D.R., Peña M.Á., Martínez F. Extended Hildebrand solubility approach applied to some sulphonamides in propylene glycol + water mixtures // Phys. Chem. Liq. 2015. V. 53. P. 763-775. https://doi.org/10.1080/00319104.2015.1048247
- Escobedo J., Mansoori G.A. Viscometric determination of the onset of asphaltene flocculation: A novel method // SPE Prod. Fac. 1995. V. 10. P. 115-118. https://doi.org/10.2118/28018-PA
- Hoepfner M.P., Limsakoune V., Chuenmeechao V., Maqbool T., Fogler H.S. A fundamental study of asphaltene deposition // Energy Fuels. 2013. V. 27. P. 725-735. https://doi.org/10.1021/ef3017392
- Boukadi A., Philp R.P., Thanh N.X. Characterization of paraffinic deposits in crude oil storage tanks using high temperature gas chromatography // Appl. Geochem. 2005. V. 20. P. 1974-1983. https://doi.org/10.1016/j.apgeochem.2005.06.004
- Anisimov M.A., Ganeeva Y.M., Gorodetskii E., Deshabo V.A., Kosov V.I., Kuryakov V.N., Yudin D.I., Yudin I.K. Effects of resins on aggregation and stability of asphaltenes // Energy Fuels. 2014. V. 28. P. 6200-6209. https://doi.org/10.1021/ef501145a
- Evdokimov I.N., Fesan A.A., Losev A.P. Asphaltenes: Absorbers and scatterers at near-ultraviolet-visible-near-infrared wavelengths // Energy Fuels. 2017. V. 31. P. 3878-3884. https://doi.org/10.1021/acs.energyfuels.7b00114
- Speight J.G. The molecular nature of petroleum asphaltenes // Arabian J. Sci. Eng. 1994. V. 19. P. 335. http://masder.kfnl.gov.sa/handle/123456789/2967?locale=en
- Alimohammadi S., Zendehboudi S., James L. A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips // Fuel. 2019. V. 252. P. 753-791. https://doi.org/10.1016/j.fuel.2019.03.016
- Pina A., Mougin P., Béchar E. Characterization of asphaltenes and modelling of flocculation - state of the art // Oil Gas Sci. Technol. 2006. V. 61. P. 319-343. https://doi.org/10.2516/ogst:2006037a
- Moreira J.C. Deposição de Asfaltenos: Medidas Experimentais e Modelagem Termodinâmica. Master Dissertation, Campinas, São Paulo, 1993. https://repositorioslatinoamericanos.uchile.cl/handle/2250/1331865?show=full
- Kawanaka S., Leontaritis K., Park S.J., Mansoori G.A. Thermodynamic and colloidal models of asphaltene flocculation, In: Oil-Field Chemistry: Enhanced Recovery and Production Simulation, Borchardt J.K., Yen T.F., eds. 1989, chpt. 24, pp. 443-458. https://doi.org/10.1021/bk-1989-0396.ch024
- Victorov A.I., Firoozabadi A. Thermodynamic micellization model of asphaltene precipitation from petroleum fluids // AIChE J. 1996. V. 42. P. 1753-1764. https://doi.org/10.1002/aic.690420626
- IP 143/84. Asphaltene Precipitation with Normal Heptane. Standard Methods for Analysis and Testing of Petroleum and Related Products, Institute of Petroleum, London, 1989.
- Sheu E.Y., Liang K.S., Sinha S.K., Overfield R.E. Polydispersity analysis of asphaltene solutions in toluene // J. Colloid Interface Sci. 1992. V. 153. P. 399-410. https://doi.org/10.1016/0021-9797(92)90331-F
- Riedeman J.S., Kadasala N.R., Wei A., Kenttämaa H.I. Characterization of asphaltene deposits by using mass spectrometry and Raman spectroscopy // Energy Fuels. 2016. V. 30. P. 805-809. https://doi.org/10.1021/acs.energyfuels.5b02002
- Thomas S. Enhanced oil recovery - An overview // Oil Gas Sci. Technol. 2008. V. 63. P. 9-19. https://doi.org/10.2516/ogst:2007060
- Abbas H., Manasrah A.D., Saad A.A., Sebakhy K.O., Bouhadda Y. Adsorption of Algerian asphaltenes onto synthesized maghemite iron oxide nanoparticles // Pet. Chem. 2021. V. 61. P. 67-75. https://doi.org/10.1134/S0965544121010072
- Arciniegas L.M., Babadagli T. Asphaltene precipitation, flocculation and deposition during solvente Injection at elevated temperatures for heavy oil recovery // Fuel. 2014. V. 124. P. 202-211. https://doi.org/10.1016/j.fuel.2014.02.003
- Ghosh A.K., Chaudhuri P., Kumar B., Panja S.S. Review on aggregation of asphaltene vis-a-vis spectroscopic studies // Fuel. 2016. V. 185. P. 541-554. https://doi.org/10.1016/j.fuel.2016.08.031
- Soleymanzadeh A., Yousefi M., Kord S., Mohammadzadeh O. A review on methods of determining onset of asphaltene precipitation // J. Petrol. Explor. Prod. Technol. 2019. V. 9. P. 1375-1396. https://doi.org/10.1007/s13202-018-0533-5
- Shalygin A., Kozhevnikov I., Kazarian S., Martyanov O. Spectroscopic imaging of deposition of asphaltenes from crude oil under flow // J. Petrol. Sci. Eng. 2019. V. 181. P. 106205. https://doi.org/10.1016/j.petrol.2019.106205
- Rogel E., Miao T., Vien J., Roye M. Comparing asphaltenes: Deposit versus crude oil // Fuel. 2015. V. 147. P. 155-160. https://doi.org/10.1016/j.fuel.2015.01.045
- Lordeiro F.B., Altoé R., Hartmann D., Filipe E.J.M., González G., Lucas E.F. The stabilization of asphaltenes in different crude fractions: A molecular approach // J. Braz. Chem. Soc. 2021. V. 32. P. 741-756. https://doi.org/10.21577/0103-5053.20200226
- Setaro L.L.O., Pereira V.J., Costa G.M.N., Vieira de Melo S.A.B. A novel method to predict the risk of asphaltene precipitation due to CO2 displacement in oil reservoirs // J. Petrol. Sci. Eng. 2019. V. 176. P. 1008-1017. https://doi.org/10.1016/j.petrol.2019.02.011
- Stratiev D., Shishkova I., Nedelchev A., Kirilov K., Nikolaychuk E., Ivanov A., Sharafutdinov I., Veli A., Mitkova M., Tsaneva T., Petkova N., Sharpe R., Yordanov D., Belchev Z., Nenov S., Rudnev N., Atanassova V., Sotirova E., Sotirov S., Atanassov K. Investigation of relationships between petroleum properties and their impact on crude oil compatibility // Energy Fuels. 2015. V. 29. P. 7836-7854. https://doi.org/10.1021/acs.energyfuels.5b01822
- Nunes R.C.P., Valle M.R.T., Reis W.R.D., Aversa T.M., Filipakis S.D., Lucas E.F. Model molecules for evaluating asphaltene precipitation onset of crude oils // J. Braz. Chem. Soc. 2019. V. 30. P. 1241-1251. https://doi.org/10.21577/0103-5053.20190019
- Souza M.A., Oliveira G.E., Lucas E.F., González G. The onset of precipitation of asphaltenes in solvents of different solubility parameters. In: Surface and Colloid Scince, Progress in Colloid and Polymer Science, 2004. V. 128. P. 283-287. https://doi.org/10.1007/b97114
- Mutelet F., Ekulu G., Solimando R., Rogalski M. Solubility parameters of crude oils and asphaltenes // Energy Fuels. 2004. V. 18. P. 667-673. https://doi.org/10.1021/ef0340561
- Wiehe I.A., Kennedy R.J. Solubility parameters of crude oils and asphaltenes // Energy Fuels. 2000. V. 14. P. 56-59. https://doi.org/10.1021/ef990133+
- Hirschberg A., deJong L.N.J., Schipper B.A., Meijer J.G. Influence of temperature and pressure on asphaltene flocculation // SPE J. 1984. V. 24. P. 283-293. https://doi.org/10.2118/11202-PA
- Camargo R.A., Ramos A.C.S., Gatto D.A., Beltrame R.T., Monks J.L.F. Organic deposition in petroleum storage tanks at refineries due to blending operations // Braz. J. Petrol. Gas. 2019. V. 13. P. 265-274. https://doi.org/10.5419/bjpg2019-0022
- Alves B.F., Pereira P.H.R., Nunes R.C.P., Lucas E.F. Influence of solvent solubility parameter on the performance of EVA copolymers as pour point modifiers of waxy model-systems // Fuel. 2019. V. 258. P. 116196. https://doi.org/10.1016/j.fuel.2019.116196
- Oliveira L.M.S., Nunes R.C.P., Pessoa L.M.B., Reis L.G., Spinelli L.S., Lucas E.F. Influence of the chemical structure of additives poly(ethylene-co-vinyl acetate)-based on the pour point of crude oils // J. Appl. Polym. Sci. 2020. V. 137. P. 48969. https://doi.org/10.1002/app.48969
- Steckel L., Nunes R.C.P., Rocha P.C., Alvares D.R.S., Ramos A.C.S., Lucas E.F. Pour point depressant: identification of critical wax content and model system to estimate performance in crude oil // Fuel. 2022. V. 307. P. 121853. https://doi.org/10.1016/j.fuel.2021.121853
- D'Avila F.G., Silva C.M.F., Steckel L., Ramos A.C.S., Lucas E.F. Influence of asphaltene aggregation state on the wax crystallization process and the efficiency of EVA as wax crystals modifier: A study using model systems // Energy Fuels. 2020. V. 34. P. 4095-4105. https://doi.org/10.1021/acs.energyfuels.9b04166
- Garreto M.S.E., González G., Ramos A.C.S., Lucas E.F. Looking for a model solvent to disperse asphaltenes // Chem. Chem. Technol. 2010. V. 4. P. 317-323. https://doi.org/10.23939/chcht04.04.317
- Garreto M.S.E., Mansur C.R.E., Lucas E.F. A model system to assess the phase behavior of asphaltenes in crude oil // Fuel. 2013. V. 113. P. 318-322. https://doi.org/10.1016/j.fuel.2013.05.097
- Barreira F.R., Reis L.G., Nunes R.C.P., Filipakis S.D., Lucas E.F. The asphaltenes precipitation onset: influence of the addition of a second crude oil or its asphaltenes fractions (C3I and C5I) // Energy Fuels. 2018. V. 32. P. 10391-10397. https://doi.org/10.1021/acs.energyfuels.8b01749
- Mazzeo C.P.P., Stedille F.A., Mansur C.R.E., Ramos A.C.S., Lucas E.F. Flocculation of asphaltenes by polymers: Influence of polymer solubility conditions // Energy Fuels. 2018. V. 32. P. 1087-1095. https://doi.org/10.1021/acs.energyfuels.7b02577
- Celia-Silva L.G., Vilela P.B., Morgado P., Lucas E.F., Martins F.G., Filipe E.J.M. Pre-aggregation of asphaltenes in presence of natural polymers by molecular dynamics simulation // Energy Fuels. 2020. V. 34. P. 1581-1591. https://doi.org/10.1021/acs.energyfuels.9b03703
- López D., Giraldo L.J., Lucas E.F., Riazi M., Franco C.A., Cortés F.B. Cardanol/SiO2 nanocomposites for inhibition of formation damage by asphaltene precipitation/deposition in light crude oil reservoirs. Part I: Novel nanocomposite design based on SiO2-cardanol interactions // Energy Fuels. 2020. V. 34. P. 7048-7057. https://doi.org/10.1021/acs.energyfuels.0c01114
- Maravilha T.S.L., Middea A., Spinelli L.S., Lucas E.F. Reduction of asphaltenes adsorbed on kaolinite by polymers based on cardanol // Braz. J. Chem. Eng. 2020. V. 38. P. 155-163. https://doi.org/10.1007/s43153-020-00082-2
- Hartmann D., Lopes H.E., Teixeira C.L.S., Oliveira M.C.K., González G., Lucas E.F., Spinelli L.S. Alkanes induced asphaltenes precipitation studies at high pressure and temperature // Energy Fuels. 2016. V. 30. P. 3693-3706. https://doi.org/10.1021/acs.energyfuels.5b02217
Supplementary files
