Molecular Dynamics Simulations for Surfactant Research (A Review)
- Authors: Ivanova A.A.1, Kol'tsov I.N.2, Groman A.A.2, Cheremisin A.N.1
-
Affiliations:
- Skolkovo Institute of Science and Technology
- Gazpromneft Technology Partnerships
- Issue: Vol 63, No 4 (2023)
- Pages: 449-470
- Section: Articles
- URL: https://rjpbr.com/0028-2421/article/view/655593
- DOI: https://doi.org/10.31857/S0028242123040019
- EDN: https://elibrary.ru/OMVPMQ
- ID: 655593
Cite item
Abstract
This review discusses the theoretical basis and examples of implementation of various molecular modeling approaches to the investigation of the properties of surfactants. These surfactant properties include the ability to reduce the interfacial tension and alter the wettability and viscosity of solutions for the purposes of chemical flooding of crude oil reservoirs. A comparative analysis of the advantages and disadvantages of the existing molecular dynamics simulation methods is further provided. It is shown that molecular modeling methods can significantly facilitate the choice of surfactants for specific oil field conditions and can serve as a potential alternative to experimental measurements.
About the authors
A. A. Ivanova
Skolkovo Institute of Science and Technology
Email: anastasia.ivanova@skoltech.ru
121205, Moscow, Russia
I. N. Kol'tsov
Gazpromneft Technology Partnerships
Email: petrochem@ips.ac.ru
190000, Moscow, Russia
A. A. Groman
Gazpromneft Technology Partnerships
Email: petrochem@ips.ac.ru
190000, Moscow, Russia
A. N. Cheremisin
Skolkovo Institute of Science and Technology
Author for correspondence.
Email: petrochem@ips.ac.ru
121205, Moscow, Russia
References
- Gao G., Nguyen C.V., Phan C.M. Molecular arrangement between electrolyte and alcohol at the air/water interface // J. of Molecular Liquids. 2017. Р. 859-867. https://doi.org/10.1016/j.molliq.2017.07.083
- Jha N.K., Ivanova A., Lebedev M., Barifcani A., Cheremisin A., Iglauer S., Sangwai J.S., Sarmadivaleh M. Interaction of low salinity surfactant nanofluids with carbonate surfaces and molecular level dynamics at fluid-fluid interface at scCO2 loading // J. of Colloid and Interface Science. 2021. V.586. Р. 315-325. https://doi.org/https://doi.org/10.1016/j.jcis.2020.10.095
- Liu G., Li R., Wei Y., Gao F., Wang H., Yuan S., Liu C. Molecular dynamics simulations on tetraalkylammonium interactions with dodecyl sulfate micelles at the air/water interface // J. of Molecular Liquids. 2016. https://doi.org/10.1016/j.molliq.2016.08.009
- Phan C.M., Nguyen C.V., Yusa S., Yamada N.L. Synergistic adsorption of MIBC/CTAB mixture at the air/water interface and applicability of gibbs adsorption equation // Langmuir. 2014. V. 30. № 20. Р. 5790-5796. https://doi.org/10.1021/la500721d
- Domínguez H. Computer simulations of surfactant mixtures at the liquid/liquid interface // J. of Physic. Chemistry. B. 2002. V. 106. Р. 5915-5924. https://doi.org/10.1021/jp014403c
- Ivanova A., Cheremisin A., Barifcani A., Iglauer S., Phan C. Molecular dynamics study of the effect of sodium and chloride ions on water-surfactant-hydrocarbon interfaces // Chem. Physics. 2021. https://doi.org/https://doi.org/10.1016/j.chemphys.2021.111243
- Ivanova A.A., Cheremisin A.N., Barifcani A., Iglauer S., Phan C. Molecular insights in the temperature effect on adsorption of cationic surfactants at liquid/liquid interfaces // J. of Molecular Liquids. 2020. V. 299. P. 112104. https://doi.org/10.1016/j.molliq.2019.112104
- Kuhn, H., & Rehage, H. Molecular orientation of monododecyl pentaethylene glycol at water/air and water/oil interfaces. A molecular dynamics computer simulation study // Colloid and Polymer Science. 2000. V. 278. P. 114-118. https://doi.org/10.1007/s003960050019
- Bai S., Kubelka J., Piri M. Wettability alteration by Smart Water multi-ion exchange in carbonates: A molecular dynamics simulation study // J. of Molecular Liquids. 2021a. V. 332. P. 115830. https://doi.org/10.1016/j.molliq.2021.115830
- Kmiecik S., Gront D., Kolinski M., Wieteska L., Elzbieta Dawid A., Kolinski A. Coarse-Grained Protein Models and Their Applications // Chem. Rev. 2016. V. 116. N 14. P. 7898-7936. https://doi.org/10.1021/acs.chemrev.6b00163
- Goodarzi, F., & Zendehboudi, S. Effects of salt and surfactant on interfacial characteristics of water/oil systems: Molecular dynamic simulations and dissipative particle dynamics // Ind. and Engin. Chemistry Research. 2019. V. 58. P. 8817-8834. https://doi.org/10.1021/acs.iecr.9b00504
- Cai H.-Y., Zhang Y., Liu Z.-Y., Li J.-G., Gong Q.-T., Liao Q., Zhang L., Zhao S. Molecular dynamics simulation of binary betaine and anionic surfactant mixtures at decane-water interface // J. of Molecular Liquids. 2018. V. 266. P. 82-89. https://doi.org/10.1016/j.molliq.2018.06.047
- van Buuren A.R., Marrink S.J., Berendsen H.J.C. A molecular dynamics study of the decane/water interface // J. of Physic. Chemistry. 1993. V. 97. N 36. P. 9206-9212. https://doi.org/10.1021/j100138a023
- Van Os N.M., Rupert L.A.M., Smit B., Hilbers P.A.J., Esselink K., Böhmer M.R., Koopal L.K. Surfactant adsorption at liquid/liquid interfaces comparison of experimental results with self-consistent field lattice calculations and molecular dynamics simulations // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1993. V. 81. P. 217-229. https://doi.org/10.1016/0927-7757(93)80249-E
- Shi P., Zhang H., Lin L., Song C., Chen Q., Li Z. Molecular dynamics simulation of four typical surfactants at oil/water interface // J. of Dispersion Science and Technology. 2018a. V. 39. N 9. P. 1258-1265. https://doi.org/10.1080/01932691.2017.1392319
- Goddard, E. D. Surfactants and interfacial phenomena // Colloids and Surfaces. 1989. V. 40. P. 347. https://doi.org/10.1016/0166-6622(89)80030-7
- Xu J., Zhang Y., Chen H., Wang P., Xie Z., Yao Y., Yan Y., Zhang, J. Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study // J. of Molecular Structure. 2013. V. 1052. P. 50-56. https://doi.org/10.1016/j.molstruc.2013.07.049
- Wang Z.-S., Zhou Z.-H., Han L., Chen X., He H.-J., Zhang Q., Xu Z., Gong Q., Zhang L., Ma G.-Y., Zhang L. The mechanism for lowering interfacial tension by extended surfactant containing ethylene oxide and propylene oxide groups // J. of Molecular Liquids. 2022. V. 359. P. 119364. https://doi.org/10.1016/j.molliq.2022.119364
- Shi P., Zhang H., Lin L., Song C., Chen Q., Li Z. Molecular dynamics study of the effect of inorganic salts on the monolayer of four surfactants at the oil/water interface // J. of Dispersion Science and Technology. 2018b. V. 39. Р. 1758-1766. https://doi.org/10.1080/01932691.2018.1462200
- Xue C., Qu G., Han Y., Li S., Gao X., Ding W. Molecular dynamics simulations of sulfobetaine-type zwitterionic surfactant at the decane/water interface // J. of Dispersion Science and Technology. 2016. V. 37. Р. 1480-1485. https://doi.org/10.1080/01932691.2015.1113882
- Qu G., Xue C., Zhang M., Liang S., Han Y., Ding W. Molecular dynamics simulation of sulfobetaine-type zwitterionic surfactants at the decane/water interface: structure, interfacial properties // J. of Dispersion Science and Technology. 2016. V. 37. Р. 1710-1717. https://doi.org/10.1080/01932691.2015.1135400
- Jang S.S., Lin S.-T., Maiti P.K., Blanco M., Goddard W.A., Shuler P., Tang Y. Molecular dynamics study of a surfactant-mediated decane-water interface: effect of molecular architecture of alkyl benzene sulfonate // J. of Physic. Сhemistry B. 2004. V. 108. Р. 12130-12140. https://doi.org/10.1021/jp048773n
- Jia J., Li J., Liang Y., Peng B. Molecular dynamics study on performance of olefin sulfonate at the decane-water interface: effect of molecular architecture // Fuel. 2022. V. 308. P. 122013. https://doi.org/10.1016/j.fuel.2021.122013
- Xu Y., Wang Z., Han X., Hong J., Wang Y. Impact of sodium dodecyl benzene sulfonate concentration on the stability of the crude oil-mineral water interfacial film: a molecular dynamics simulation study // Energy & Fuels. 2022. V. 36. P. 4358-4369. https://doi.org/10.1021/acs.energyfuels.2c00457
- Ahmadi M., Chen Z. Insight into the interfacial behavior of surfactants and asphaltenes: molecular dynamics simulation study // Energy & Fuels. 2020. V. 34. P. 13536-13551. https://doi.org/10.1021/acs.energyfuels.0c01596
- Gao F., Xu Z., Liu G., Yuan S. Molecular dynamics simulation: the behavior of asphaltene in crude oil and at the oil/water interface // Energy & Fuels. 2014. V. 28. P. 7368-7376. https://doi.org/10.1021/ef5020428
- Alasiri H.S., Sultan A.S., Chapman W.G. Effect of surfactant headgroup, salts, and temperature on interfacial properties: dissipative particle dynamics and experiment for the water/octane/surfactant system // Energy & Fuels. 2019. V. 33. P. 6678-6688. https://doi.org/10.1021/acs.energyfuels.9b01740
- Vu T.V., Papavassiliou D.V. Oil-water interfaces with surfactants: A systematic approach to determine coarse-grained model parameters // J. of Chemical Physics. 2018. V. 148. P. 204704. https://doi.org/10.1063/1.5022798
- Li Y., Zhang H., Bao M., Chen Q. Aggregation behavior of surfactants with different molecular structures in aqueous solution: DPD simulation study // J. of Dispersion Science and Technology. 2012. V. 33. P. 1437-1443. https://doi.org/10.1080/01932691.2011.620897
- Anderson, R.L., Bray, D.J., Del Regno, A., Seaton, M.A., Ferrante, A.S., Warren, P.B. Micelle formation in alkyl sulfate surfactants using dissipative particle dynamics // J. of Chemical Theory and Computation. 2018. V. 14. P. 2633-2643. https://doi.org/10.1021/acs.jctc.8b00075
- Mayoral E., Arcos-Casarrubias J.A., Gama Goicochea A. Self-assembly of model surfactants as reverse micelles in nonpolar solvents and their role as interfacial tension modifiers // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 615. P. 126244. https://doi.org/10.1016/j.colsurfa.2021.126244
- Kubelka J., Bai S., Piri M. Effects of surfactant charge and molecular structure on wettability alteration of calcite: insights from molecular dynamics simulations // J. of Physical Chemistry B. 2021. V. 125 P. 1293-1305. https://doi.org/10.1021/acs.jpcb.0c10361
- Ivanova A., Mitiurev N., Cheremisin A., Orekhov A., Kamyshinsky R., Vasiliev A. Characterization of organic layer in oil carbonate reservoir rocks and its effect on microscale wetting properties // Scientific Reports. 2019. V. 9. P. 10667. https://doi.org/10.1038/s41598-019-47139-y
- Tang X., Xiao S., Lei Q., Yuan L., Peng B., He L., Luo J., Pei Y. Molecular dynamics simulation of surfactant flooding driven oil-detachment in nano-silica channels // J. of Physic. Chemistry B. 2019. V. 123. P. 277-288. https://doi.org/10.1021/acs.jpcb.8b09777
- Liang Y., Tsuji S., Jia J., Tsuji T., Matsuoka T. Modeling CO2-water-mineral wettability and mineralization for carbon geosequestration // Accounts of Chemical Research. 2017. V. 50. P. 1530-1540. https://doi.org/10.1021/acs.accounts.7b00049
- Ivanova A., Orekhov A., Markovic S., Iglauer S., Grishin P., Cheremisin A. Live imaging of micro and macro wettability variations of carbonate oil reservoirs for enhanced oil recovery and CO2 trapping/storage // Scientific Reports. 2022. V. 12. P. 1-12. https://doi.org/10.1038/s41598-021-04661-2
- Bai S., Kubelka J., Piri M. A positively charged calcite surface model for molecular dynamics studies of wettability alteration // J. of Colloid and Interface Science. 2020a. V. 569. P. 128-139. https://doi.org/10.1016/j.jcis.2020.02.037
- Bai S., Kubelka J., Piri M. Relationship between molecular charge distribution and wettability reversal efficiency of cationic surfactants on calcite surfaces // J. of Molecular Liquids. 2020b. V. 318. P. 114009. https://doi.org/10.1016/j.molliq.2020.114009
- Bai S., Kubelka J., Piri M. Wettability alteration by Smart Water multi-ion exchange in carbonates: A molecular dynamics simulation study // J. of Molecular Liquids. 2021. V. 332. P. 115830. https://doi.org/10.1016/j.molliq.2021.115830
- Tetteh J., Bai S., Kubelka J., Piri M. Wettability reversal on oil-wet calcite surfaces: Experimental and computational investigations of the effect of the hydrophobic chain length of cationic surfactants // J. of Colloid and Interface Science. 2022. V. 619. P. 168-178. https://doi.org/10.1016/j.jcis.2022.03.114
- Das S., Khabaz F., Nguyen Q., Bonnecaze R.T. Molecular dynamics simulations of aqueous nonionic surfactants on a carbonate surface // J. of Physical Chemistry B. 2020. V. 124. P. 8158-8166. https://doi.org/10.1021/acs.jpcb.0c03997
- Bai S., Kubelka J., Piri M. Wettability reversal on dolomite surfaces by divalent ions and surfactants: an experimental and molecular dynamics simulation study // Langmuir. 2021. V. 37. P. 6641-6649. https://doi.org/10.1021/acs.langmuir.1c00415
- Li X., Xue Q., Zhu L., Jin Y., Wu T., Guo Q., Zheng H., Lu S. How to select an optimal surfactant molecule to speed up the oil-detachment from solid surface: A computational simulation // Chem. Engineering Science. 2016. V. 147. P. 47-53. https://doi.org/10.1016/j.ces.2016.03.031
- Guo J., Xia Y., Liu Y., Liu S., Zhang L., Li B. Microscopic adsorption behaviors of ionic surfactants on lignite surface and its effect on the wettability of lignite: A simulation and experimental study // J. of Molecular Liquids. 2022. V. 345. P. 117851. https://doi.org/10.1016/j.molliq.2021.117851
- Ahmadi M., Chen Z. Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection // Energy. 2020. V. 254. P. 124434. https://doi.org/10.1016/j.energy.2022.124434
- Alizadehmojarad A.A., Fazelabdolabadi B., Vuković L. Surfactant-controlled mobility of oil droplets in mineral nanopores // Langmuir. 2020. V. 36. P. 12061-12067. https://doi.org/10.1021/acs.langmuir.0c02518
- Duin A.C.T. van, Larter S.R. A computational chemical study of penetration and displacement of water films near mineral surfaces // Geochemical Transactions. 2001. V. 2. P. 35. https://doi.org/10.1039/b105078h
- Durán-Álvarez A., Maldonado-Domínguez M., González-Antonio O., Durán-Valencia C., RomeroÁvila M., Barragán-Aroche F., López-Ramírez S. Experimental-theoretical approach to the adsorption mechanisms for anionic, cationic, and zwitterionic surfactants at the calcite-water interface // Langmuir. 2016. V. 32. P. 2608-2616. https://doi.org/10.1021/acs.langmuir.5b04151
- Lowry E., Sedghi M., Goual L. Molecular simulations of NAPL removal from mineral surfaces using microemulsions and surfactants // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016. V. 506. P. 485-494. https://doi.org/10.1016/j.colsurfa.2016.07.002
- Ruiz-Morales Y., Romero-Martínez A. Coarse-grain molecular dynamics simulations to investigate the bulk viscosity and critical micelle concentration of the ionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution // J. of Physic. Chemistry B. 2016. V. 122. P. 3931-3943. https://doi.org/10.1021/acs.jpcb.7b10770
- Alasiri H. Determining critical micelle concentrations of surfactants based on viscosity calculations from coarse-grained molecular dynamics simulations // Energy & Fuels. 2020. V. 33. P. 2408-2412. https://doi.org/10.1021/acs.energyfuels.8b04228
- Liu D., Liu F., Zhou W., Chen F., Wei J. Molecular dynamics simulation of self-assembly and viscosity behavior of PAM and CTAC in salt-added solutions // J. of Molecular Liquids. 2018. V. 268. P. 131-139. https://doi.org/10.1016/j.molliq.2018.07.053
- Castillo-Tejas J., Alvarado J.F.J., Carro S., PérezVillaseñor F., Bautista F., Manero O. Rheology of wormlike micelles from non-equilibrium molecular dynamics // J. of Non-Newtonian Fluid Mechanics. 2011. V. 166. P. 194-207. https://doi.org/10.1016/j.jnnfm.2010.11.009
- Castillo-Tejas J., Castrejón-González O., Carro S., González-Coronel V., Alvarado J. F. J., Manero O. Associative polymers. Part III: Shear rheology from molecular dynamics // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016. V. 491. P. 37-49. https://doi.org/10.1016/j.colsurfa.2015.11.052
- Volkov N.A., Eroshkin Yu.A., Shhekin A.K., Kol'tsov I.N., Tret'yakov N.Yu., Turnaeva E.A., Volkova S.S., Groman A.A. Molecular dynamics of decane solubilization and diffusion of aggregates consisting of surfactant and decane molecules in aqueous solutions // Colloid J. 2021. V. 83. P. 406-417. 10.1134/S1061933X21040141
- Волков Н.А., Ерошкин Ю.А., Щекин А.К., Кольцов И.Н., Третьяков Н.Ю., Турнаева Е.А., Волкова С.С., Громан А.А. Молекулярная динамика cолюбилизации декана и диффузии агрегатов из молекул пав и декана в водных растворах // Коллоидный журнал. 2021. V. 83. P. 406-417. https://doi.org/10.31857/S0023291221040157.
- Liu Q., Ji X., Wang S., Zou W., Li J., Lv D., Yin B., Yan H., Wei X. Effect of additives on surfactant micelle shape transformation: rheology and molecular dynamics studies // J. of Physic. Chemistry C. 2019. V. 123. P. 2922-2932. https://doi.org/10.1021/acs.jpcc.8b10495
- Yan Z., Dai C., Zhao M., Sun Y. Rheological characterizations and molecular dynamics simulations of self-assembly in an anionic/cationic surfactant mixture // Soft Matter. 2016. V. 12. P. 6058-6066. https://doi.org/10.1039/C6SM00759G
- Yu M., Mu Y., Wang G., Nasr-El-Din H.A. Impact of hydrolysis at high temperatures on the apparent viscosity of carboxybetaine viscoelastic surfactant-based acid: experimental and molecular dynamics simulation studies // SPE J. 2012. V. 17. P. 1119-1130. https://doi.org/10.2118/142264-PA
- Peroukidis S.D., Tsalikis D.G., Noro M.G., Stott I.P., Mavrantzas, V. G. Quantitative prediction of the structure and viscosity of aqueous micellar solutions of ionic surfactants: a combined approach based on coarse-grained MARTINI simulations followed by reverse-mapped all-atom molecular dynamics simulations // J. of Chemical Theory and Computation. 2020. V. 16. P. 3363-3372. https://doi.org/10.1021/acs.jctc.0c00229
- Zhou J.,Ranjith P.G. Self-assembly and viscosity changes of binary surfactant solutions: A molecular dynamics study // J. of Colloid and Interface Science. 2021. V. 585. P. 250-257. https://doi.org/10.1016/j.jcis.2020.11.022
Supplementary files
