Sintez zhidkikh uglevodorodov iz SO2 v odnu stadiyu s ispol'zovaniem gibridnykh sokristallizovannykh tseolitnykh struktur
- Authors: Magomedova M.V.1, Starozhitskaya A.V.1, Galanova E.G.1, Matevosyan D.V.1, Egazar'yants S.V.2, Maksimov A.L.1
-
Affiliations:
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- Московский государственный университет имени М.В. Ломоносова
- Issue: Vol 63, No 6 (2023)
- Pages: 867-877
- Section: Articles
- URL: https://rjpbr.com/0028-2421/article/view/655577
- DOI: https://doi.org/10.31857/S0028242123060060
- EDN: https://elibrary.ru/RTLOTA
- ID: 655577
Cite item
Abstract
Keywords
About the authors
M. V. Magomedova
Институт нефтехимического синтеза им. А.В. Топчиева РАН
A. V. Starozhitskaya
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: av-star@ips.ac.ru
E. G. Galanova
Институт нефтехимического синтеза им. А.В. Топчиева РАН
D. V. Matevosyan
Институт нефтехимического синтеза им. А.В. Топчиева РАН
S. V. Egazar'yants
Московский государственный университет имени М.В. Ломоносова
A. L. Maksimov
Институт нефтехимического синтеза им. А.В. Топчиева РАН
References
- Hua Z., Yang Y., Liu J. Direct hydrogenation of carbon dioxide to value-added aromatics // Coord. Chem. Rev. 2023. V. 478. P. 214982. https://doi.org/10.1016/j.ccr.2022.214982
- Alli Y.A., Oladoye P.O., Ejeromedoghene O., Bankole O.M., Alimi O.A., Omotola E.O., Olanrewaju C.A., Philippot K., Adeleye A.S., Ogunlaja A.S. Nanomaterials as catalysts for CO2 transformation into value-added products: a review // Sci. Total Environ. 2023. V. 868. P. 161547. https://doi.org/10.1016/j.scitotenv.2023.161547
- Sholeha N.A., Holilah H., Bahruji H., Ayub A., Widiastuti N., Ediati R., Jalil A.A., Ulfa M., Masruchin N., Nugraha R.E., Prasetyoko D. Recent trend of metal promoter role for CO2 hydrogenation to C1 and C2+ products // South African J. Chem. Eng. 2023. V. 44. P. 14-30. https://doi.org/10.1016/j.sajce.2023.01.002
- Дементьев К.И., Дементьева О.С., Иванцов М.И., Куликова М.В., Магомедова М.В., Максимов А.Л., Лядов А.С., Старожицкая А.В., Чудакова М.В. Перспективные направления переработки диоксида углерода с использованием гетерогенных катализаторов (обзор) // Нефтехимия. 2022. T. 62. № 3. C. 289-327. https://doi.org/10.31857/S0028242122030017
- Dement'ev K.I., Dementeva O.S., Ivantsov M.I., Kulikova M.V., Magomedova M.V., Maximov A.L., Lyadov A.S., Starozhitskaya A.V., Chudakova M.V. Promising approaches to carbon dioxide processing using heterogeneous catalysts (a review) // Petrol. Chemistry. 2022. V. 62. № 5. P. 445-474. https://doi.org/10.1134/S0965544122050012.
- Магомедова М.В., Старожицкая А.В., Афокин М.И., Перов И.В., Кипнис М.А., Лин Г.И. Математическое моделирование и расчет процесса получения метанола по реакции гидрирования СО2 // Нефтехимия. 2020. T. 60. № 6. С. 786-792. https://doi.org/10.31857/S0028242120060143
- Magomedova M.V., Starozhitskaya A.V., Afokin M.I., Perov I., Kipnis M.A., Lin G.I. Mathematical modeling and calculation of the methanol production process via carbon dioxide hydrogenation // Petrol. Chemistry. 2020. V. 60. № 11. P. 1244-1250. https://doi.org/10.1134/S0965544120110146.
- Kamkeng A.D.N., Wang M., Hu J., Du W., Qian F., Wang M., Hu J., Du W., Qian F. Transformation technologies for CO2 utilisation: current status, challenges and future prospects // Chem. Eng. J. 2021. V. 409. P. 128138.
- CRI signs agreement with Jiangsu Sailboat for a 100 000 tons per year CO2 to methanol plant [Electronic resource]. https://www.carbonrecycling.is/news-media/cri-chemical-plant-project-in-china-will-recycle-150000-tons-of-co2-per-year-to-make-materials-for-solar-panels.
- George olah renewable methanol plant: first production of fuel from CO2 at industrial scale [Electronic resource]. URL: https://www.carbonrecycling.is/project-goplant.
- Pérez-Fortes M., Tzimas E. Techno-economic and environmental evaluation of CO2 utilisation for fuel production. Synthesis of methanol and formic acid // Scientific and Technical Research Series. 2016. 85 p. https://doi.org/10.2790/89238
- Li Y., Zeng L., Pang G., Wei X., Wang M., Cheng K., Kang J., Serra J.M., Zhang Q., Wang Y. Direct conversion of carbon dioxide into liquid fuels and chemicals by coupling green hydrogen at high temperature // Appl. Catal. B Environ. 2023. V. 324. 122299. https://doi.org/10.1016/j.apcatb.2022.122299
- Wen C., Jin K., Lu L., Jiang Q., Wu J., Zhuang X., Zhang X., Chen L., Wang C., Ma L. Insight into the direct conversion of syngas toward aromatics over the Cu promoter Fe-zeolite tandem catalyst // Fuel. 2023. V. 331. Part 2. P. 125855. https://doi.org/10.1016/j.fuel.2022.125855
- Song G., Zhai Y., Jiang Q., Liu D. Unraveling the Mn-promoted coke elimination mechanism by CO2 over NaFeMn/ZSM-5 catalyst during CO2 hydrogenation // Fuel. 2023. V. 338. P. 127185. https://doi.org/10.1016/j.fuel.2022.127185
- Jiang Y., Wang K., Wang Y., Liu Z., Gao X., Zhang J., Ma Q., Fan S., Zhao T.-S., Yao M. Recent advances in thermocatalytic hydrogenation of carbon dioxide to light olefins and liquid fuels via modified Fischer-Tropsch pathway // J. CO2 Util. 2023. V. 67. P. 102321. https://doi.org/102321. 10.1016/j.jcou.2022.102321
- Wang W., Toshcheva E., Ramirez A., Shterk G., Ahmad R., Caglayan M., Cerrillo L., Dokania A., Clancy G., Shoinkhorova T.B., Hijazi N., Cavallo L., Gascon J. Catalysis Science & technology bimetallic Fe-Co catalysts for the one step selective hydrogenation of CO2 to liquid hydrocarbons // Catal. Sci. Technol. Royal Society of Chemistry. 2023. V. 13. P. 1527-1540. https://doi.org/10.1039/d2cy01880b
- Wei J., Ge Q., Yao R., Wen Z., Fang C., Guo L., Xu H., Sun J. Directly converting CO2 into a gasoline fuel // Nat. Commun. 2017. V. 8. № 1. P. 15174. https://doi.org/10.1038/ncomms15174
- Nezam I., Zhou W., Gusmão G.S., Realff M.J., Wang Y., Medford A.J., Jones C.W. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis // J. CO2 Util. 2021. V. 45. P. 101405. https://doi.org/10.1016/j.jcou.2020.101405
- Sibi M.G., Khan M.K., Verma D., Yoon W., Kim J. High-yield synthesis of BTEX over Na-FeAlOx/Zn-HZSM-5@SiO2 by direct CO2 conversion and identification of surface intermediates // Appl. Catal. B Environ. 2022. V. 301. P. 120813. https://doi.org/10.1016/j.apcatb.2021.120813
- Nezam I., Zhou W., Shah D.R., Bukhovko M.P., Ball M.R., Gusmão G.S., Medford A.J., Jones C.W. Role of catalyst domain size in the hydrogenation of CO2 to aromatics over ZnZrOx/ZSM-5 catalysts // J. Phys. Chem. C. 2023. V. 127. № 13. P. 6356-6370. https://doi.org/10.1021/acs.jpcc.3c01306
- Parra O., Portillo A., Ereña J., Aguayo A.T., Bilbao J., Ateka A. Boosting the activity in the direct conversion of CO2/CO mixtures into gasoline using ZnO-ZrO2 catalyst in tandem with HZSM-5 zeolite // Fuel Process. Technol. 2023. V. 245. 107745. https://doi.org/10.1016/j.fuproc.2023.107745
- Xie T., Ding J., Shang X., Zhang X., Zhong Q. Effective synergies in indium oxide loaded with zirconia mixed with silicoaluminophosphate molecular sieve number 34 catalysts for carbon dioxide hydrogenation to lower olefins // J. Colloid Interface Sci. 2023. V. 635. P. 148-158. https://doi.org/10.1016/j.jcis.2022.12.086
- To A.T., Arellano-Treviño M.A., Nash C.P., Ruddy D.A. Direct synthesis of branched hydrocarbons from CO2 over composite catalysts in a single reactor // J. CO2 Util. 2022. V. 66. 102261. https://doi.org/10.1016/j.jcou.2022.102261
- Tian H., Jiao J., Zha F., Guo X., Tang X., Chang Y., Chen H. Hydrogenation of CO2 into aromatics over ZnZrO-Zn/HZSM-5 composite catalysts derived from ZIF-8 // Catal. Sci. Technol. 2022. V. 12. № 3. P. 799-811. https://doi.org/10.1039/d1cy01570b
- Li Y., Wang M., Liu S., Wu F., Zhang Q., Zhang S., Cheng K., Wang Y. Distance for communication between metal and acid sites for syngas conversion // ACS Catal. 2022. V. 12. № 15. P. 8793-8801. https://doi.org/10.1021/acscatal.2c02125
- Tian H., He H., Jiao J., Zha F., Guo X., Tang X., Chang Y. Tandem catalysts composed of different morphology HZSM-5 and metal oxides for CO2 hydrogenation to aromatics // Fuel. Elsevier Ltd. 2022. V. 314. P. 123119. https://doi.org/10.1016/j.fuel.2021.123119
- Wang T., Yang C., Gao P., Zhou S., Li S., Wang H., Sun Y. ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation // Appl. Catal. B Environ. 2021. V. 286. P. 119929. https://doi.org/10.1016/j.apcatb.2021.119929
- Zhang X., Zhang A., Jiang X., Zhu J., Liu J., Li J., Zhang G., Song C., Guo X. Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst // J. CO2 Util. Elsevier. 2019. V. 29. P. 140-145. https://doi.org/10.1016/j.jcou.2018.12.002
- Ramirez A., Dutta Chowdhury A., Dokania A., Cnudde P., Caglayan M., Yarulina I., Abou-Hamad E., Gevers L., Ould-Chikh S., De Wispelaere K., Van Speybroeck V., Gascon J. Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics // ACS Catal. 2019. V. 9. № 7. P. 6320-6334. https://doi.org/10.1021/acscatal.9b01466
- Zhou C., Shi J., Zhou W., Cheng K., Zhang Q., Kang J., Wang Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide // ACS Catal. 2020. V. 10. № 1. P. 302-310. https://doi.org/10.1021/acscatal.9b04309
- Ni Y., Chen Z., Fu Y., Liu Y., Zhu W., Liu Z. Selective conversion of CO2 and H2 into aromatics // Nat. Commun. 2018. V. 9. 3457. https://doi.org/10.1038/s41467-018-05880-4
- Yarulina I., Chowdhury A.D., Meirer F., Weckhuysen B.M., Gascon J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process // Nat. Catal. 2018. V. 1. № 6. P. 398-411. https://doi.org/10.1038/s41929-018-0078-5
- Magomedova M. V., Starozhitskaya A. V., Davidov I.A., Tsaplin D.E., Maximov A.L. Dimethyl ether to olefins on hybrid intergrowth structure zeolites // Catalysts. 2023. V. 13. № 3. P. 570. https://doi.org/10.3390/catal13030570
- Miao C., Shang K., Liang L., Chen S., Ouyang J. Efficient and stable Ni/ZSM-5@MCM-41 catalyst for CO2 methanation // ACS Sustain. Chem. Eng. 2022. V. 10. № 38. P. 12771-12782. https://doi.org/10.1021/acssuschemeng.2c03693
- Millward G.R., Ramdas S., Thomas J.M., Barlow M.T. Evidence for semi-regularly ordered sequences of mirror and inversion symmetry planes in ZSM-5/ZSM-11 shape-selective zeolitic catalysts // J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1983. V. 79. № 7. P. 1075-1082. https://doi.org/10.1039/F29837901075
- Li P., Zhang W., Han X., Bao X. Conversion of methanol to hydrocarbons over phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites // Catal. Letters. 2010. V. 134. № 1-2. P. 124-130. https://doi.org/10.1007/s10562-009-0214-6
- Kim J.J., Jeong D.J., Jung H.S., Hur Y.G., Choung J.W., Baik J.H., Park M.J., Chung C.H., Bae J.W. Dimethyl ether conversion to hydrocarbons on the closely interconnected FER@ZSM-5 nanostructures // Microporous Mesoporous Mater. 2022. V. 340. P. 112034. https://doi.org/10.1016/j.micromeso.2022.112034
- Magomedova M., Starozhitskaya A., Davidov I., Maximov A., Kravtsov M. Dual-cycle mechanism based kinetic model for dme-to-olefin synthesis on HZSM-5-type catalysts // Catalysts. 2021. V. 11. № 12. https://doi.org/10.3390/catal11121459
- Olsbye U., Svelle S., Bjrgen M., Beato P., Janssens T.V.W., Joensen F., Bordiga S., Lillerud K.P. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity // Angew. Chemie Int. Ed. 2012. V. 51. № 24. P. 5810-5831. https://doi.org/10.1002/ANIE.201103657
- Tsaplin D.E., Kulikov L.A., Maksimov A.L., Кarakhanov E.A. Method for obtaining a composite material with a hierarchical structure // Patent RU № 2773945C1. 2022. https://yandex.ru/patents/doc/RU2773945C1_20220614
- Maksimov A.L., Magomedova M.V., Afokin M.I., Tsaplin D.E., Kulikov L.A., Ionin D.A. Method for producing an HZSM-type zeolite (variants) and method for producing aromatic hydrocarbons of the C6-C11 fraction // Patent RU № 2753263C1. 2021.
- Maximov A.L., Magomedova M. V., Galanova E.G., Afokin M.I., Ionin D.A. Primary and secondary reactions in the synthesis of hydrocarbons from dimethyl ether over a Pd-Zn-HZSM-5/Al2O3 catalyst // Fuel Process. Technol. 2020. V. 199. P. 106281. https://doi.org/10.1016/j.fuproc.2019.106281
Supplementary files
