Spatial organization of chromatin of KLF5 gene promoter region in pancreatic ductal adenocarcinoma cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Pancreatic Ductal AdenoCarcinoma (PDAC) is characterized by a poor prognosis and is poorly amenable to modern therapies. A range of cell cultures reflecting different degrees of tumor differentiation and malignancy can serve as a model of PDAC development. Highly differentiated low malignant cells are characterized by increased expression of the KLF5 gene. The KLF5 protein is a vivid representative of multifunctional transcription factors, and its involvement in a variety of cellular processes, particularly in the pathology of various cancers, has been demonstrated. We investigated the spatial organization of chromatin of regulatory regions of KLF5 gene using highly differentiated Capan2 cells PDAC with a high level of KLF5 expression and poorly differentiated MIA PaCa2 PDAC cells with a low level of this gene expression by circular chromosome conformation capture (4C-seq). It was shown that the number and distribution of contacts of the KLF5 regulatory region with other chromatin regions are significantly different for these cell types; the number of contacts is significantly higher for Capan2 cells. There is a correlation between the expression level of genes close to KLF5 and the intensity of their sequence contacts with the KLF5 regulatory region, indicating that their expression is coordinated, possibly within the transcriptional factory. Only Capan2 is characterized by a high level of contacts of the KLF5 regulatory region with the gene free region containing a cluster of PDAC-associated single nucleotide polymorphisms (SNP). Thus, the total number of contacts of the promoter region of the KLF5 gene and the expression level of most of the surrounding KLF5 genes decrease as the grade of cell malignancy increases.

Full Text

Restricted Access

About the authors

M. V. Zinovyeva

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: lev@ibch.ru
Russian Federation, Moscow, 117997

L. G. Nikolaev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: lev@ibch.ru
Russian Federation, Moscow, 117997

References

  1. Collisson E.A., Bailey P., Chang D.K., Biankin A.V. (2019) Molecular subtypes of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 207–220.
  2. Rawla P., Sunkara T., Gaduputi V. (2019) Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J. Oncol. 10, 10–27.
  3. Kung H.C., Yu J. (2023) Targeted therapy for pancreatic ductal adenocarcinoma: mechanisms and clinical study. MedComm. (2020). 4, e216.
  4. Pandey S., Gupta V.K., Lavania S.P. (2023) Role of epigenetics in pancreatic ductal adenocarcinoma. Epigenomics. 15, 89–110.
  5. Hafner A., Boettiger A. 2023. The spatial organization of transcriptional control. Nat. Rev. Genet. 24, 53–68.
  6. van Roey R., Brabletz T., Stemmler M.P., Armstark I. (2021) Deregulation of transcription factor networks driving cell plasticity and metastasis in pancreatic cancer. Front. Cell Dev. Biol. 9, 753456.
  7. Diaferia G.R., Balestrieri C., Prosperini E., Nicoli P., Spaggiari P., Zerbi A., Natoli G. (2016) Dissection of transcriptional and cis-regulatory control of differentiation in human pancreatic cancer. EMBO J. 35, 595–617.
  8. Абжалимов И.Р., Зиновьева М.В., Николаев Л.Г., Копанцева М.Р., Копанцев Е.П., Свердлов Е.Д. (2017) Экспрессия генов транскрипционных факторов в линиях клеток, соответствующих разным стадиям прогрессии рака поджелудочной железы. Докл. РАН. 475, 333–335.
  9. Luo Y., Chen C. (2021) The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci. 112, 2097–2117.
  10. Зиновьева М.В., Костина М.Б., Чернов И.П., Кондратьева Л.Г., Свердлов Е.Д. (2016) KLF5, новый игрок и новая мишень в постоянно меняющемся составе молекулярных двигателей рака поджелудочной железы. Биоорган. химия. 42, 668–674.
  11. Hoskins J.W., Ibrahim A., Emmanuel M.A., Manmiller S.M., Wu Y., O´Neill M., Jia J., Collins I., Zhang M., Thomas J.V., Rost L.M., Das S., Parikh H., Haake J.M., Matters G.L., Kurtz R.C., Bamlet W.R., Klein A., Stolzenberg-Solomon R., Wolpin B.M., Yarden R., Wang Z., Smith J., Olson S.H., Andresson T., Petersen G.M., Amundadottir L.T. (2016) Functional characterization of a chr13q22.1 pancreatic cancer risk locus reveals long-range interaction and allele-specific effects on DIS3 expression. Hum. Mol. Genet. 25, 4726–4738.
  12. Wolpin B.M., Rizzato C., Kraft P., Kooperberg C., Petersen G.M., Wang Z., Arslan A.A., Beane-Freeman L., Bracci P.M., Buring J., Canzian F., Duell E.J., Gallinger S., Giles G.G., Goodman G.E., Goodman P.J., Jacobs E.J., Kamineni A., Klein A.P., Kolonel L.N., Kulke M.H., Li D., Malats N., Olson S.H., Risch H.A., Sesso H.D., Visvanathan K., White E., Zheng W., Abnet C.C., Albanes D., Andreotti G., Austin M.A., Barfield R., Basso D., Berndt S.I., Boutron-Ruault M.C., Brotzman M., Buchler M.W., Bueno-de-Mesquita H.B., Bugert P., Burdette L., Campa D., Caporaso N.E., Capurso G., Chung C., Cotterchio M., Costello E., Elena J., Funel N., Gaziano J.M., Giese N.A., Giovannucci E.L., Goggins M., Gorman M.J., Gross M., Haiman C.A., Hassan M., Helzlsouer K.J., Henderson B.E., Holly E.A., Hu N., Hunter D.J., Innocenti F., Jenab M., Kaaks R., Key T.J., Khaw K.T., Klein E.A., Kogevinas M., Krogh V., Kupcinskas J., Kurtz R.C., LaCroix A., Landi M.T., Landi S., Le Marchand L., Mambrini A., Mannisto S., Milne R.L., Nakamura Y., Oberg A.L., Owzar K., Patel A.V., Peeters P.H., Peters U., Pezzilli R., Piepoli A., Porta M., Real F.X., Riboli E., Rothman N., Scarpa A., Shu X.O., Silverman D.T., Soucek P., Sund M., Talar-Wojnarowska R., Taylor P.R., Theodoropoulos G.E., Thornquist M., Tjonneland A., Tobias G.S., Trichopoulos D., Vodicka P., Wactawski-Wende J., Wentzensen N., Wu C., Yu H., Yu K., Zeleniuch-Jacquotte A., Hoover R., Hartge P., Fuchs C., Chanock S.J., Stolzenberg-Solomon R.S., Amundadottir L.T. (2014) Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat. Genet. 46, 994–1000.
  13. Petersen G.M., Amundadottir L., Fuchs C.S., Kraft P., Stolzenberg-Solomon R.Z., Jacobs K.B., Arslan A.A., Bueno-de-Mesquita H.B., Gallinger S., Gross M., Helzlsouer K., Holly E.A., Jacobs E.J., Klein A.P., LaCroix A., Li D., Mandelson M.T., Olson S.H., Risch H.A., Zheng W., Albanes D., Bamlet W.R., Berg C.D., Boutron-Ruault M.C., Buring J.E., Bracci P.M., Canzian F., Clipp S., Cotterchio M., de Andrade M., Duell E.J., Gaziano J.M., Giovannucci E.L., Goggins M., Hallmans G., Hankinson S.E., Hassan M., Howard B., Hunter D.J., Hutchinson A., Jenab M., Kaaks R., Kooperberg C., Krogh V., Kurtz R.C., Lynch S.M., McWilliams R.R., Mendelsohn J.B., Michaud D.S., Parikh H., Patel A.V., Peeters P.H., Rajkovic A., Riboli E., Rodriguez L., Seminara D., Shu X.O., Thomas G., Tjonneland A., Tobias G.S., Trichopoulos D., Van Den Eeden S.K., Virtamo J., Wactawski-Wende J., Wang Z., Wolpin B.M., Yu H., Yu K., Zeleniuch-Jacquotte A., Fraumeni J.F., Jr., Hoover R.N., Hartge P., Chanock S.J. (2010) A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 42, 224–228.
  14. Zhang Y., Yao C., Ju Z., Jiao D., Hu D., Qi L., Liu S., Wu X., Zhao C. (2023) Kruppel-like factors in tumors: key regulators and therapeutic avenues. Front. Oncol. 13, 1080720.
  15. Palioura D., Lazou A., Drosatos K. (2022) Kruppel-like factor (KLF)5: an emerging foe of cardiovascular health. J. Mol. Cell. Cardiol. 163, 56–66.
  16. Li J., Liu L., Zhou W.Q., Cai L., Xu Z.G., Rane M.J. (2021) Roles of Kruppel-like factor 5 in kidney disease. J. Cell. Mol. Med. 25, 2342–2355.
  17. He P., Yang J.W., Yang V.W., Bialkowska A.B. (2018) Kruppel-like factor 5, increased in pancreatic ductal adenocarcinoma, promotes proliferation, acinar-to-ductal metaplasia, pancreatic intraepithelial neoplasia, and tumor growth in mice. Gastroenterology. 154, 1494–1508 e1413.
  18. van de Werken H.J., de Vree P.J., Splinter E., Holwerda S.J., Klous P., de Wit E., de Laat W. (2012) 4C technology: protocols and data analysis. Meth. Enzymol. 513, 89–112.
  19. Mihara N., Chiba T., Yamaguchi K., Sudo H., Yagishita H., Imai K. (2017) Minimal essential region for kruppel-like factor 5 expression and the regulation by specificity protein 3-GC box binding. Gene. 601, 36–43.
  20. Shen W., Le S., Li Y., Hu F. (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 11, e0163962.
  21. Langmead B., Trapnell C., Pop M., Salzberg S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.
  22. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 2078–2079.
  23. Thongjuea S., Stadhouders R., Grosveld F.G., Soler E., Lenhard B. (2013) r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucl. Acids Res. 41, e132.
  24. Klein F.A., Pakozdi T., Anders S., Ghavi-Helm Y., Furlong E.E., Huber W. (2015) FourCSeq: analysis of 4C sequencing data. Bioinformatics. 31, 3085–3091.
  25. Geeven G., Teunissen H., de Laat W., de Wit E. (2018) peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. Nucl. Acids Res. 46, e91.
  26. Raviram R., Rocha P.P., Muller C.L., Miraldi E.R., Badri S., Fu Y., Swanzey E., Proudhon C., Snetkova V., Bonneau R., Skok J.A. (2016) 4C-ker: a method to reproducibly identify genome-wide interactions captured by 4C-Seq experiments. PLoS Comput. Biol. 12, e1004780.
  27. Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. (2002) The human genome browser at UCSC. Genome Res. 12, 996–1006.
  28. Lee B.T., Barber G.P., Benet-Pages A., Casper J., Clawson H., Diekhans M., Fischer C., Gonzalez J.N., Hinrichs A.S., Lee C.M., Muthuraman P., Nassar L.R., Nguy B., Pereira T., Perez G., Raney B.J., Rosenbloom K.R., Schmelter D., Speir M.L., Wick B.D., Zweig A.S., Haussler D., Kuhn R.M., Haeussler M., Kent W.J. (2022) The UCSC Genome Browser database: 2022 update. Nucl. Acids Res. 50, D1115–D1122.
  29. Moore J.E., Purcaro M.J., Pratt H.E., Epstein C.B., Shoresh N., Adrian J., Kawli T., Davis C.A., Dobin A., Kaul R., Halow J., Van Nostrand E.L., Freese P., Gorkin D.U., Shen Y., He Y., Mackiewicz M., Pauli-Behn F., Williams B.A., Mortazavi A., Keller C.A., Zhang X.O., Elhajjajy S.I., Huey J., Dickel D.E., Snetkova V., Wei X., Wang X., Rivera-Mulia J.C., Rozowsky J., Zhang J., Chhetri S.B., Victorsen A., White K.P., Visel A., Yeo G.W., Burge C.B., Lecuyer E., Gilbert D.M., Dekker J., Rinn J., Mendenhall E.M., Ecker J.R., Kellis M., Klein R.J., Noble W.S., Kundaje A., Guigo R., Farnham P.J., Cherry J.M., Myers R.M., Ren B., Graveley B.R., Gerstein M.B., Pennacchio L.A., Snyder M.P., Bernstein B.E., Wold B., Hardison R.C., Gingeras T.R., Stamatoyannopoulos J.A., Weng Z. (2020) Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 583, 699–710.
  30. Barrett T., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M., Marshall K.A., Phillippy K.H., Sherman P.M., Holko M., Yefanov A., Lee H., Zhang N., Robertson C.L., Serova N., Davis S., Soboleva A. (2013) NCBI GEO: archive for functional genomics data sets–update. Nucl. Acids Res. 41, D991–995.
  31. Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y., Kaplan S., Dahary D., Warshawsky D., Guan-Golan Y., Kohn A., Rappaport N., Safran M., Lancet D. (2016) The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics. 54, 1.30.1‒1.30.33.
  32. Collisson E.A., Sadanandam A., Olson P., Gibb W.J., Truitt M., Gu S., Cooc J., Weinkle J., Kim G.E., Jakkula L., Feiler H.S., Ko A.H., Olshen A.B., Danenberg K.L., Tempero M.A., Spellman P.T., Hanahan D., Gray J.W. (2011) Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503.
  33. Kawai-Kowase K., Kurabayashi M., Hoshino Y., Ohyama Y., Nagai R. (1999) Transcriptional activation of the zinc finger transcription factor BTEB2 gene by Egr-1 through mitogen-activated protein kinase pathways in vascular smooth muscle cells. Circ. Res. 85, 787–795.
  34. Chen C., Zhou Y., Zhou Z., Sun X., Otto K.B., Uht R.M., Dong J.T. (2004) Regulation of KLF5 involves the Sp1 transcription factor in human epithelial cells. Gene. 330, 133–142.
  35. Takeda T., Yokoyama Y., Takahashi H., Okuzaki D., Asai K., Itakura H., Miyoshi N., Kobayashi S., Uemura M., Fujita T., Ueno H., Mori M., Doki Y., Fujii H., Eguchi H., Yamamoto H. (2022) A stem cell marker KLF5 regulates CCAT1 via three-dimensional genome structure in colorectal cancer cells. Br. J. Cancer. 126, 109–119.
  36. Koutsi M.A., Pouliou M., Champezou L., Vatsellas G., Giannopoulou A.I., Piperi C., Agelopoulos M. (2022) Typical enhancers, super-enhancers, and cancers. Cancers (Basel). 14, 4375.
  37. Chen L., Huang M., Plummer J., Pan J., Jiang Y.Y., Yang Q., Silva T.C., Gull N., Chen S., Ding L.W., An O., Yang H., Cheng Y., Said J.W., Doan N., Dinjens W.N., Waters K.M., Tuli R., Gayther S.A., Klempner S.J., Berman B.P., Meltzer S.J., Lin D.C., Koeffler H.P. (2020) Master transcription factors form interconnected circuitry and orchestrate transcriptional networks in oesophageal adenocarcinoma. Gut. 69, 630–640.
  38. Jiang Y.Y., Jiang Y., Li C.Q., Zhang Y., Dakle P., Kaur H., Deng J.W., Lin R.Y., Han L., Xie J.J., Yan Y., Doan N., Zheng Y., Mayakonda A., Hazawa M., Xu L., Li Y., Aswad L., Jeitany M., Kanojia D., Guan X.Y., Said J.W., Yang W., Fullwood M.J., Lin D.C., Koeffler H.P. (2020) TP63, SOX2, and KLF5 establish a core regulatory circuitry that controls epigenetic and transcription patterns in esophageal squamous cell carcinoma cell lines. Gastroenterology. 159, 1311–1327 e1319.
  39. Chen C.H., Yang N., Zhang Y., Ding J., Zhang W., Liu R., Liu W., Chen C. (2019) Inhibition of super enhancer downregulates the expression of KLF5 in basal-like breast cancers. Int. J. Biol. Sci. 15, 1733–1742.
  40. Kimura H., Sato Y. (2022) Imaging transcription elongation dynamics by new technologies unveils the organization of initiation and elongation in transcription factories. Curr. Opin. Cell Biol. 74, 71–79.
  41. Didych D.A., Shamsutdinov M.F., Smirnov N.A., Akopov S.B., Monastyrskaya G.S., Uspenskaya N.Y., Nikolaev L.G., Sverdlov E.D. (2013) Human PSENEN and U2AF1L4 genes are concertedly regulated by a genuine bidirectional promoter. Gene. 515, 34–41.
  42. Smirnov N.A., Akopov S.B., Didych D.A., Nikolaev L.G. (2017) In trans promoter activation by enhancers in transient transfection. Gene. 603, 15–20.
  43. Hoffman M.M., Ernst J., Wilder S.P., Kundaje A., Harris R.S., Libbrecht M., Giardine B., Ellenbogen P.M., Bilmes J.A., Birney E., Hardison R.C., Du ham I., Kellis M., Noble W.S. (2013) Integrative annotation of chromatin elements from ENCODE data. Nucl. Acids Res. 41, 827–841.
  44. Xu Z., Lee D.S., Chandran S., Le V.T., Bump R., Yasis J., Dallarda S., Marcotte S., Clock B., Haghani N., Cho C.Y., Akdemir K.C., Tyndale S., Futreal P.A., McVicker G., Wahl G.M., Dixon J.R. (2022) Structural variants drive context-dependent oncogene activation in cancer. Nature. 612, 564–572.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. S1

Download (1MB)
3. Table S1
Download (15KB)
4. Table S2
Download (15KB)
5. Table S3
Download (16KB)
6. Table S4
Download (19KB)
7. Table S5
Download (19KB)
8. Table S6
Download (27KB)
9. Table S7
Download (22KB)
10. Fig. 1. Structure and sequencing of libraries. a – Structure of libraries. P5, P7, Reading – sequences for Illumina sequencing; H- and D-primers – unique primers for inverse PCR from the side of the Hind III and Dpn II sites, respectively; index – index sequences; insert – amplified genomic sequence in contact with the anchor. б – Electrophoresis in 4C agarose gel of libraries after the second round of PCR amplification. The library number corresponds to the Hind III primer number (see Table 1). M_1 and M_0.1 – DNA markers of 1 and 0.1 kb, respectively. в – Typical arrangement of reads relative to the Hind III cleavage sites in the region of chromosome 13. Three ligation options are shown: (1) along one of the strands; (2) along the opposite strand; (3) on both strands with different efficiencies. Figure prepared using SeqMonk (https://www.bioinformatics.babraham.ac.uk/projects/seqmonk). г – Location of contact sites in a 6-Mb region of chromosome 13 around the KLF5 gene. The ordinate axis shows the number of reads per million (RPM) in the corresponding library, the blue vertical line shows the position of the anchor sequences. The top two lanes show the distribution of contacts of the K1 anchor sequence and Capan2 cells in two independent experiments; the next two lanes show the same data for MIA PaCa2 cells. д – Location of contact sites in a small (200 kb) region of chromosome 13 near the KLF12 gene. The ordinate axis shows the number of reads in the corresponding library. The top two lanes compare the distribution of contacts of the K1 and K3 anchor sequences in Capan2 cells, the next two lanes do the same for MIA PaCa2 cells. The bottom shows the location of Hind III cleavage sites.

Download (679KB)
11. Fig. 2. Distribution of contacts of the KLF5 gene anchor region in a 6-Mb region of human chromosome 13 (3 Mb on the 5´- and 3´-sides from the anchor). The results of the analysis of MIA PaCa2 and Capan2 cells obtained using peakC, FourCSeq, and R3Cseq are shown and presented as –log(P-value). The horizontal line corresponds to the threshold P-value (0.05 for peakC and 0.01 for FourCseq and R3Cseq). For differential contacts detected using the 4C-ker program, the threshold P-value was 0.01. The vertical arrow shows the position of the anchor sequence. The bottom panel shows the location of eight topologically associated domains (TADs) of chromatin according to Hi-C data for Capan1 cells [44].

Download (873KB)
12. Fig. 3. The arrangement of selected and normalized contact sites of the KLF5 gene anchor region in the 6-Mb region of human chromosome 13 relative to some functional elements. The contact regions specific to Capan2 and MIA PaCa2 cells and common to both cell lines are shown separately. a – Tissue specificity of gene expression in Capan2 and MIA PaCa2 cells, the relationship between the gene expression level and the number of its contacts with the KLF5 promoter region. The ordinate axes show the FPKM values ​​for assessing the gene expression level and –lg(P-value) for the contact sites. б – The arrangement relative to the contacts of single nucleotide polymorphism points and deletions/insertions (SNPs/indels) associated with PDAC according to the genome-wide analysis (GWAS, Genome-Wide Association Studies, see [11, 13]).

Download (562KB)
13. Fig. 4. Relationship between gene expression levels and intensity of their contacts with the KLF5 anchor region in two gene-rich regions of chromosome 13 (circled by squares in Fig. 3a). a – Region with coordinates 75,800,000 – 76,500,000 bp; б – Region with coordinates 73,280,000 – 73,600,000 bp. The ordinate axes show FPKM values ​​for gene expression levels and –log(P-value) for contact regions. Arrows indicate the direction of gene transcription. Gene expression levels are given according to data from [7] (available in the NCBI GEO database, GSE64558). All contacts identified in each cell line (both cell line-specific and common) are shown.

Download (509KB)
14. Fig. 5. Distribution of genomic contacts of the KLF5 gene anchor region and histone H3 modifications in the chromatin of Capan2 and MIA PaCa2 cells (available in the NCBI GEO database, GSE64560) in a 6-Mb region of chromosome 13. The ordinate axes show FPKM values ​​for gene expression levels and –log(P-value) for contact sites. Gene expression levels are given according to [7] (available in the NCBI GEO database, GSE64560). All contacts identified in each cell line (both line-specific and common) are shown.

Download (398KB)

Copyright (c) 2024 Russian Academy of Sciences