Autophagy impairment in Parkinson’s disease: approaches to therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Parkinson's disease (PD) is one of the most common neurodegenerative disorders characterized by progressive motor impairment due to the death of dopaminergic neurons in the substantia nigra of the brain. PD affects more than 1% of the population over 60 years of age worldwide. Despite significant progress in understanding the pathogenesis of PD, including genetic and biochemical aspects, current therapies are limited to symptomatic treatment. Recent evidence suggests that impaired autophagy leads to the accumulation of abnormal proteins, particularly α-synuclein, aggregated forms of which are neurotoxic to dopaminergic neurons in the substantia nigra. Notably, PD is predominantly sporadic. However, monogenic forms of the disease have also been described. Among the most common PD forms with known etiology are PD associated with mutations in the GBA1 gene and PD associated with mutations in the LRRK2 gene. Leucine-rich repeat kinase 2 (LRRK2), encoded by the LRRK2 gene, and the lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene, are involved in the same endolysosomal pathway. The LRRK2 and GCase dysfunction reported in PD, especially in the case of mutations in the genes encoding them, can lead to impairment of the endolysosomal pathway, lysosomal function, and possibly autophagy. This review highlights the molecular mechanisms of autophagy and prospects for targeted therapy of PD based on the induction of autophagy by influencing key players in this process.

Full Text

Restricted Access

About the authors

T. S. Usenko

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”; Pavlov First Saint-Petersburg State Medical University

Author for correspondence.
Email: usenko_ts@pnpi.nrcki.ru
Russian Federation, Gatchina; Saint-Petersburg

References

  1. Rocca W.A. (2018) The burden of Parkinson’s disease: a worldwide perspective. Lancet Neurol. 17(11), 928‒929. https://doi.org/10.1016/S1474-4422(18)30355-7
  2. Dorsey E.R., Bloem B.R. (2018) The Parkinson pandemic — a call to action. JAMA Neurol. 75, 9‒10.
  3. Leentjens A.F.G., Dujardin K., Pontone G.M., Starkstein S.E., Weintraub D., Martinez-Martin P. (2014) The Parkinson anxiety scale (PAS): development and validation of a new anxiety scale. Mov. Disord. 29(8), 1035‒1043. https://doi.org/ 10.1002/mds.25919
  4. Ben‒Shlomo Y., Darweesh S., Llibre-Guerra J., Marras C., San Luciano M., Tanner C. (2024) The epidemiology of Parkinson’s disease. Lancet. 403(10423), 283‒292. https://doi.org/10.1016/S0140-6736(23)01419-8
  5. He S., Zhong S., Liu G., Yang J. (2021) Alpha-synuclein: the interplay of pathology, neuroinflammation, and environmental factors in Parkinson’s disease. Neurodegener. Dis. 20(2‒3), 55‒64. https://doi.org/10.1159/000511083
  6. Bobela W., Aebischer P., Schneider B.L. (2015) Alpha-synuclein as a mediator in the interplay between aging and Parkinson’s disease. Biomolecules. 5(4), 2675–2700. https://doi.org/10.3390/biom5042675
  7. Shadrina M.I., Slominsky P.A. (2023) Genetic architecture of Parkinson’s disease. Biochemistry (Mosc.). 88, 417–433.
  8. Kalia L.V., Lang A.E. (2016) Evolving basic, pathological and clinical concepts in PD. Nat. Rev. Neurol. 12(2), 65‒66. https://doi.org/10.1038/nrneurol.2015.249
  9. Simpson C., Vinikoor-Imler L., Nassan F.L., Shirvan J., Lally C., Dam T., Maserejian N. (2022) Prevalence of ten LRRK2 variants in Parkinson’s disease: a comprehensive review. Parkinsonism Relat. Disord. 98, 103‒113. https://doi.org/10.1016/j.parkreldis.2022.05.012
  10. Riboldi G.M., Di Fonzo A.B. (2019) GBA, Gaucher disease, and Parkinson’s disease: from genetic to clinic to new therapeutic approaches. Cells. 8(4), 364. https://doi.org/10.3390/cells8040364
  11. Cai Q., Ganesan D. (2022) Regulation of neuronal autophagy and the implications in neurodegenerative diseases. Neurobiol. Dis. 162, 105582. https://doi.org/10.1016/j.nbd.2021.105582
  12. Rubinsztein D.C., Codogno P., Levine B. (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11(9), 709‒730. https://doi.org/10.1038/nrd3802
  13. Menzies F.M., Fleming A., Caricasole A., Bento C.F., Andrews S.P., Ashkenazi A., Füllgrabe J., Jackson A., Jimenez Sanchez M., Karabiyik C., Licitra F., Lopez Ramirez A., Pavel M., Puri C., Renna M., Ricketts T., Schlotawa L., Vicinanza M., Won H., Zhu Y., Skidmore J., Rubinsztein D.C. (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 93(5), 1015‒1034. https://doi.org/10.1016/j.neuron.2017.01.022
  14. Hubert V., Weiss S., Rees A.J., Kain R. (2022) Modulating chaperone-mediated autophagy and its clinical applications in cancer. Cells. 11(16), 2562. https://doi.org/10.3390/cells11162562
  15. Bandyopadhyay U., Cuervo A.M. (2008) Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy. 4(8), 1101–1103. https://doi.org/10.4161/auto.7150
  16. Rout A.K., Strub M.P., Piszczek G., Tjandra N. (2014) Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP‒2A) reveals key features for substrate specificity in chaperone-mediated autophagy. J. Biol. Chem. 289(51), 35111‒35123. https://doi.org/10.1074/jbc.M114.609446
  17. Cuervo A.M., Wong E. (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24(1), 92‒104. https://doi.org/10.1038/cr.2013.153
  18. Cuervo A.M., Dice J.F. (2000) Unique properties of lamp2a compared to other lamp2 isoforms. J. Cell Sci. 24, 4441‒4450. https://doi.org/10.1242/jcs.113.24.444
  19. Fellner L., Gabassi E., Haybaeck J., Edenhofer F. (2021) Autophagy in α-synucleinopathies‒an overstrained system. Cells. 10(11), 3143. https://doi.org/10.3390/cells10113143
  20. Cuervo A.M., Stafanis L., Fredenburg R., Lansbury P.T., Sulzer D. (2004) Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science. 305(5688), 1292‒1295. https://doi.org/10.1126/science.1101738
  21. Yim W.W., Mizushima N. (2020) Lysosome biology in autophagy. Cell Discov. 6, 6. https://doi.org/10.1038/s41421-020-0141-7
  22. Mijaljica D., Prescott M., Devenish R.J. (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy. 7(7), 673‒682. https://doi.org/10.4161/auto.7.7.14733
  23. Xicoy H., Peñuelas N., Vila M., Laguna A. (2019) Autophagic- and lysosomal-related biomarkers for Parkinson’s disease: lights and shadows. Cells. 8(11), 1317. https://doi.org/10.3390/cells8111317
  24. Ylä‒Anttila P., Vihinen H., Jokitalo E., Eskelinen E.L. (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 5(8), 1180‒1185. https://doi.org/10.4161/auto.5.8.10274
  25. Yamamoto Y.H., Noda T. (2020) Autophagosome formation in relation to the endoplasmic reticulum. J. Biomed. Sci. 27(1), 97. https://doi.org/10.1186/s12929-020-00691-6
  26. Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., Oomori H., Noda T., Haraguchi T., Hiraoka Y., Amano A., Yoshimori T. (2013) Autophagosomes form at ER‒mitochondria contact sites. Nature. 495(7441), 389‒393. https://doi.org/10.1038/nature11910 doi: 10.1038/nature11910
  27. Ganesan D., Cai Q. (2021) Understanding amphisomes. Biochem. J. 478(10), 1959–1976. https://doi.org/10.1042/BCJ20200917
  28. Ravikumar B., Moreau K., Jahreiss L., Puri C., Rubinsztein D.C. (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell. Biol. 12(8), 747‒757. https://doi.org/10.1038/ncb2078
  29. Hailey D.W., Rambold A.S., Satpute-Krishnan P., Mitra K., Sougrat R., Kim PK., Lippincott-Schwartz J. (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 141(4), 656‒667. https://doi.org/10.1016/j.cell.2010.04.009
  30. Amaravadi R.K., Lippincott-Schwartz J., Yin X.M., Weiss W.A., Takebe N., Timmer W., DiPaola R.S., Lotze M.T., White E. (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 17(4), 654‒666. https://doi.org/10.1158/1078-0432.CCR-10-2634
  31. Galluzzi L., Pietrocola F., Bravo‐San Pedro J.M., Amaravadi R.K., Baehrecke E.H., Cecconi F., Codogno P., Debnath J., Gewirtz D.A., Karantza V., Kimmelman A., Kumar S., Levine B., Maiuri M.C., Martin S.J., Penninger J., Piacentini M., Rubinsztein D.C., Simon H., Simonsen A., Thorburn A.M., Velasco G., Ryan K.M., Kroemer G. (2015) Autophagy in malignant transformation and cancer progression. EMBO J. 34(7), 856–880. https://doi.org/10.15252/embj.201490784
  32. Russell R.C., Yuan H.X., Guan K.L. (2014) Autophagy regulation by nutrient signaling. Cell Res. 24(1), 42‒57. https://doi.org/10.1038/cr.2013.166
  33. Zinzalla V., Stracka D., Oppliger W., Hall M.N. (2011) Activation of mTORC2 by association with the ribosome. Cell. 144(5), 757‒768. https://doi.org/10.1016/j.cell.2011.02.014
  34. Saxton R.A., Sabatini D.M. (2017) mTOR signaling in growth, metabolism, and disease. Cell. 168(6), 960–976. https://doi.org/10.1016/j.cell.2017.02.004
  35. Kim J., Kundu M., Viollet B., Guan K.L. (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell. Biol. 13(2), 132‒141. https://doi.org/10.1038/ncb2152
  36. Jiang B.H., Liu L.Z. (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv. Cancer Res. 102, 19–65. https://doi.org/10.1016/S0065-230X(09)02002-8
  37. Fruman D.A., Chiu H., Hopkins B.D., Bagrodia S., Cantley L.C., Abraham R.T. (2017) The PI3K pathway in human disease. Cell. 170(4), 605–635. https://doi.org/10.1016/j.cell.2017.07.029
  38. Fruman D.A., Rommel C. (2014) PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13(2), 140‒156. https://doi.org/10.1038/nrd4204
  39. Xu F., Na L., Li Y., Chen L. (2020) Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 10(1), 54. https://doi.org/10.1186/s13578-020-00416-0
  40. Inoki K., Li Y., Zhu T., Wu J., Guan K.L. (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4(9), 648‒657. https://doi.org/10.1038/ncb839.
  41. Dong C., Wu J., Chen Y., Nie J., Chen C. (2021) Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Front. Pharmacol. 12, 628690. https://doi.org/10.3389/fphar.2021.628690
  42. Lee Y.K., Lee W.S., Kim G.S., Park O.J. (2010) Anthocyanins are novel AMPKα1 stimulators that suppress tumor growth by inhibiting mTOR phosphorylation. Oncol. Rep. 24(6), 1471‒1477. https://doi.org/10.3892/or-00001007
  43. Thobe K., Sers C., Siebert H. (2017) Unraveling the regulation of mTORC2 using logical modeling. Clin. Transl. Med. 15(1), 6. https://doi.org/10.1186/s12964-016-0159-5
  44. Jain A., Arauz E., Aggarwal V., Ikon N., Chen J., Ha T. (2014) Stoichiometry and assembly of mTOR complexes revealed by single-molecule pulldown. Proc. Natl. Acad. Sci. USA. 111(50), 17833‒17838. https://doi.org/10.1073/pnas.1419425111
  45. Manzoni C., Mamais A., Dihanich S., Abeti R., Soutar M.P.M., Plun-Favreau H., Giunti P., Tooze S.A., Bandopadhyay R., Lewis P.A. (2013) Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim. Biophys. Acta Mol. Cell Res. 1833(12), 2900–2910. https://doi.org/10.1016/j.bbamcr.2013.07.020
  46. Mizushima N., Yoshimori T. (2007) How to interpret LC3 immunoblotting. Autophagy. 3(6), 542‒545. https://doi.org/10.4161/auto.4600
  47. Yoshii S.R., Mizushima N. (2017) Monitoring and measuring autophagy. Int. J. Mol. Sci. 18(9), 1865. https://doi.org/10.3390/ijms18091865
  48. Williams A., Sarkar S., Cuddon P., Ttofi E.K., Saiki S., Siddiqi F.H., Jahreiss L., Fleming A., Pask D., Goldsmith P., O’Kane C.J., Floto R.A., Rubinsztein D.C. (2008) Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4(5), 295‒305. https://doi.org/10.1038/nchembio.79
  49. Wei Y., Zou Z., Becker N., Anderson M., Sumpter R., Xiao G., Kinch L., Koduru P., Christudass C.S., Veltri R.W., Grishin N.V., Peyton M., Minna J., Bhagat G., Levine B. (2013) XEGFR‒mediated beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 154(6), 1269‒1284. https://doi.org/10.1016/j.cell.2013.08.015
  50. Tan X., Thapa N., Sun Y., Anderson R.A. (2015) A kinase-independent role for EGF receptor in autophagy initiation. Cell. 160(1–2), 145‒160. https://doi.org/10.1016/j.cell.2014.12.006
  51. Sarkar S. (2013) Regulation of autophagy by mTOR‒dependent and mTOR-independent pathways: atophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem. Soc. Trans. 41(5), 1103‒1130. https://doi.org/10.1042/BST20130134
  52. Berridge M.J. (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 1793(6), 933‒940. https://doi.org/10.1016/j.bbamcr.2008.10.005
  53. Schechter M., Sharon R. (2021) An emerging role for phosphoinositides in the pathophysiology of Parkinson’s disease. J. Parkinsons Dis. 11(4), 1725–1750. https://doi.org/10.3233/JPD-212684
  54. Alvarez‒Erviti L., Rodriguez‒Oroz M.C., Cooper J.M., Caballero C, Ferrer I., Obeso J.A., Schapira A.H.V. (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch. Neurol. 67(12), 1464‒1472. https://doi.org/10.1001/archneurol.2010.198
  55. Martinez-Vicente M., Talloczy Z., Kaushik S., Massey A.C., Mazzulli J., Mosharov E.V., Hodara R, Fredenburg R., Wu D.C., Follenzi A., Dauer W., Przedborski S., Ischiropoulos H., Lansbury P.T., Sulzer D., Cuervo A.M. (2008) Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118(2), 777‒888. https://doi.org/10.1172/JCI32806
  56. Moors T., Paciotti S., Chiasserini D., Calabresi P., Parnetti L., Beccari T., van de Berg W.D.J. (2016) Lysosomal dysfunction and α-synuclein aggregation in Parkinson’s disease: diagnostic links. Movement Disorders. 31(6), 791‒801. https://doi.org/10.1002/mds.26562
  57. Xilouri M., Vogiatzi T., Vekrellis K., Stefanis L. (2008) α-synuclein degradation by autophagic pathways: a potential key to Parkinson’s disease pathogenesis. Autophagy. 4(7), 917‒919. https://doi.org/10.4161/auto.6685
  58. Tanji K., Mori F., Kakita A., Takahashi H., Wakabayashi K. (2011) Alteration of autophagosomal proteins (LC3, GABARAP and GATE‒16) in Lewy body disease. Neurobiol. Dis. 43(3), 690‒697. https://doi.org/10.1016/j.nbd.2011.05.022
  59. Moors T.E., Paciotti S., Ingrassia A., Quadri M., Breedveld G., Tasegian A., Chiasserini D., Eusebi P., Duran‒Pacheco G., Kremer T., Calabresi P., Bonifati V., Parnetti L., Beccari T., van de Berg W.D.J. (2019) Characterization of brain lysosomal activities in GBA-related and sporadic Parkinson’s disease and dementia with Lewy bodies. Mol. Neurobiol. 56(2), 1344–1355. https://doi.org/10.1007/s12035-018-1090-0
  60. Murphy K.E., Gysbers A.M., Abbott S.K., Spiro A.S., Furuta A., Cooper A., Garner B., Kabuta T., Halliday G.M. (2015) Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson’s disease. Mov. Disord. 30(12), 1639‒1647. https://doi.org/10.1002/mds.26141
  61. Zhou Q., Liu C., Liu W., Zhang H., Zhang R., Liu J., Zhang J., Xu C., Liu L., Huang S., Chen L. (2015) Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol. Sci. 143(1), 81‒96. https://doi.org/10.1093/toxsci/kfu211
  62. Xu Y., Liu C., Chen S., Ye Y., Guo M., Ren Q., Liu L., Zhang H., Xu C., Zhou Q., Huang S., Chen L. (2014) Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease. Cell Signal. 26(8), 1680‒1689. https://doi.org/10.1016/j.cellsig.2014.04.009
  63. Giacoppo S., Bramanti P., Mazzon E. (2017) Triggering of inflammasome by impaired autophagy in response to acute experimental Parkinson’s disease: involvement of the PI3K/Akt/mTOR pathway. Neuroreport. 28(15), 996‒1007. https://doi.org/10.1097/WNR.0000000000000871
  64. Crews L., Spencer B., Desplats P., Patrick C., Paulino A., Rockenstein E., Hansen L., Adame A., Galasko D., Masliah E. (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy. PLoS One. 5(2), e9313. https://doi.org/10.1371/journal.pone.0009313
  65. Winslow A.R., Rubinsztein D.C. (2011) The Parkinson disease protein α-synuclein inhibits autophagy. Autophagy. 7(4), 429–431. https://doi.org/10.4161/auto.7.4.14393
  66. Gao S., Duan C., Gao G., Wang X., Yang H. (2015) Alpha-synuclein overexpression negatively regulates insulin receptor substrate 1 by activating mTORC1/S6K1 signaling. Int. J. Biochem. Cell Biol. 64, 25‒33. https://doi.org/10.1016/j.biocel.2015.03.006
  67. Emelyanov A.K., Usenko T.S., Tesson C., Senkevich K.A., Nikolaev M.A., Miliukhina I.V., Kopytova A.E., Timofeeva A.A., Yakimovsky A.F., Lesage S., Brice A., Pchelina S.N. (2018) Mutation analysis of Parkinson’s disease genes in a Russian data set. Neurobiol. Aging. 71, 267.e7‒267.e10. doi: 10.1016/j.neurobiolaging.2018.06.027
  68. Tolosa E., Vila M., Klein C., Rascol O (2020) LRRK2 in Parkinson disease: challenges of clinical trials. Nat. Rev. Neurol. 16(2), 97‒107. https://doi.org/10.1038/s41582-019-0301-2
  69. Alessi D.R., Sammler E. (2018) LRRK2 kinase in Parkinson’s disease. Science. 360(6384), 36‒37. https://doi.org/10.1126/science.aar5683
  70. Steger M., Tonelli F., Ito G, Davies P., Trost M., Vetter M., Wachter S., Lorentzen E., Duddy G., Wilson S., Baptista M.A., Fiske B.K., Fell M.J., Morrow J.A., Reith A.D., Alessi D.R., Mann M. (2016) Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. Elife. 5, e12813. https://doi.org/10.7554/elife.12813
  71. Eguchi T., Kuwahara T., Sakurai M., Komori T., Fujimoto T., Ito G., Yoshimura S.I., Harada A., Fukuda M., Koike M., Iwatsubo T. (2018) LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proc. Natl. Acad. Sci. USA. 115(39), E9115‒E9124. https://doi.org/10.1073/pnas.1812196115
  72. Pfeffer S.R. (2023) LRRK2 phosphorylation of Rab GTPases in Parkinson’s disease. FEBS Lett. 597(6), 811‒818. https://doi.org/10.1002/1873-3468.14492
  73. Inoshita T., Arano T., Hosaka Y., Meng H., Umezaki Y., Kosugi S., Morimoto T., Koike M., Chang H.Y., Imai Y., Hattori N. (2017) Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in Drosophila. Hum. Mol. Genet. 26(15), 2933‒2948. https://doi.org/10.1093/hmg/ddx179
  74. Taylor M., Alessi D.R. (2020) Advances in elucidating the function of leucine-rich repeat protein kinase-2 in normal cells and Parkinson’s disease. Curr. Opin. Cell Biol. 63, 102‒113. https://doi.org/10.1016/j.ceb.2020.01.001
  75. Sánchez‒Danés A., Richaud-Patin Y., Carballo-Carbajal I., Jiménez-Delgado S., Caig C., Mora S., Di Guglielmo C., Ezquerra M., Patel B., Giralt A., Canals J.M., Memo M., Alberch J., López-Barneo J., Vila M., Cuervo A.M., Tolosa E., Consiglio A., Raya A. (2012) Disease‒specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol. Med. 4(5), 380‒395. https://doi.org/10.1002/emmm.201200215
  76. Berwick D.C., Heaton G.R., Azeggagh S., Harvey K. (2019) LRRK2 biology from structure to dysfunction: research progresses, but the themes remain the same. Mol. Neurodegener. 14(1), 49. https://doi.org/10.1186/s13024-019-0344-2
  77. Orenstein S.J., Kuo S.H., Tasset I., Arias E., Koga H., Fernandez-Carasa I., Cortes E., Honig L.S., Dauer W., Consiglio A., Raya A., Sulzer D., Cuervo A.M. (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat. Neurosci. 16(4), 394‒406. https://doi.org/10.1038/nn.3350
  78. Pang S.Y., Lo R.C.N., Ho P.W., Liu H.F., Chang E.E.S., Leung C.T., Malki Y., Choi Z.Y., Wong W.Y., Kung M.H., Ramsden D.B., Ho S.L. (2022) LRRK2, GBA and their interaction in the regulation of autophagy: implications on therapeutics in Parkinson’s disease. Transl. Neurodegener. 11(1), 5. https://doi.org/10.1186/s40035-022-00281-6
  79. di Domenico A., Carola G., Calatayud C., Pons-Espinal M., Muñoz J.P., Richaud-Patin Y., Fernandez-Carasa I., Gut M., Faella A., Parameswaran J., Soriano J., Ferrer I., Tolosa E., Zorzano A., Cuervo A.M., Raya A., Consiglio A. (2019) Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson’s disease. Stem Cell Rep. 12(2), 213‒229. https://doi.org/10.1016/j.stemcr.2018.12.011
  80. Ho P.W.L., Leung C.T., Liu H., Pang S.Y.Y., Lam C.S.C., Xian J., Li L., Kung M.H.W., Ramsden D.B., Ho S.L. (2020) Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy. 16(2), 347‒370. https://doi.org/10.1080/15548627.2019.1603545
  81. Ho D.H., Kim H., Nam D., Sim H., Kim J., Kim H.G., Son I., Seol W. (2018) LRRK2 impairs autophagy by mediating phosphorylation of leucyl-tRNA synthetase. Cell Biochem. Funct. 36(8), 431‒442. https://doi.org/10.1002/cbf.3364
  82. Yadavalli N., Ferguson S.M. (2023) LRRK2 suppresses lysosome degradative activity in macrophages and microglia through MiT-TFE transcription factor inhibition. Proc. Natl. Acad. Sci. USA. 120(31), e2303789120. https://doi.org/10.1073/pnas.2303789120
  83. Usenko T.S., Timofeeva A., Beletskaia M., Basharova K., Baydakova G., Bezrukova A., Grunina M., Emelyanov A., Miliukhina I., Zakharova E., Pchelina S. (2024) The effect of p.G2019S mutation in the LRRK2 gene on the activity of lysosomal hydrolases and the clinical features of Parkinson’s disease associated with p.N370S mutation in the GBA1 gene. J. Integr. Neurosci. 23(1), 16. https://doi.org/10.31083/j.jin2301016
  84. Usenko T.S., Senkevich K.A., Basharova K.S., Bezrukova A.I., Baydakova G.V., Tyurin AA, Beletskaya M.V., Kulabukhova D.G., Grunina M.N., Emelyanov A.K., Miliukhina I.V., Timofeeva A.A., Zakharova E.Y., Pchelina S.N. (2023) LRRK2 exonic variants are associated with lysosomal hydrolase activities and lysosphingolipid alterations in Parkinson’s disease. Gene. 882, 147639. https://doi.org/10.1016/j.gene.2023.147639
  85. Alcalay R.N., Wolf P., Levy O.A., Kang U.J., Waters C., Fahn S., Ford B., Kuo S.H., Vanegas N., Shah H., Liong C., Narayan S., Pauciulo M.W., Nichols W.C., Gan-Or Z., Rouleau G.A., Chung W.K., Oliva P., Keutzer J., Marder K., Zhang X.K. (2018) Alpha galactosidase A activity in Parkinson’s disease. Neurobiol. Dis. 112, 85‒90. https://doi.org/ 10.1016/j.nbd.2018.01.012
  86. Sosero Y.L., Yu E., Krohn L., Rudakou U., Mufti K., Ruskey J.A., Asayesh F., Laurent S.B., Spiegelman D., Fahn S., Waters C., Sardi S.P., Bandres-Ciga S., Alcalay R.N., Gan-Or Z., Senkevich K. (2021) LRRK2 p.M1646T is associated with glucocerebrosidase activity and with Parkinson’s disease. Neurobiol. Aging. 103, 142.e1‒142.e5. https://doi.org/10.1016/j.neurobiolaging.2021.02.018
  87. Ysselstein D., Nguyen M., Young T.J., Severino A., Schwake M., Merchant K., Krainc D. (2019) LRRK2 kinase activity regulates lysosomal glucocerebrosidase in neurons derived from Parkinson’s disease patients. Nat. Commun. 10(1), 5570. https://doi.org/10.1038/s41467-019-13413-w
  88. Sanyal A., Novis H.S., Gasser E., Lin S., LaVoie M.J. (2020) LRRK2 kinase inhibition rescues deficits in lysosome function due to heterozygous GBA1 expression in human iPSC-derived neurons. Front. Neurosci. 14, 442. https://doi.org/10.3389/fnins.2020.00442
  89. Kedariti M., Frattini E., Baden P., Cogo S., Civiero L., Ziviani E., Zilio G., Bertoli F., Aureli M., Kaganovich A., Cookson M.R., Stefanis L., Surface M., Deleidi M., Di Fonzo A., Alcalay R.N., Rideout H., Greggio E., Plotegher N. (2022) LRRK2 kinase activity regulates GCase level and enzymatic activity differently depending on cell type in Parkinson’s disease. NPJ Parkinsons Dis. 8(1), 92. https://doi.org/10.1038/s41531-022-00354-3
  90. Zhang Y., Shu L., Sun Q., Zhou X., Pan H., Guo J., Tang B. (2018) Integrated genetic analysis of racial differences of common GBA variants in Parkinson’s disease: a meta-analysis. Front. Mol. Neurosci. 11, 43. https://doi.org/10.3389/fnmol.2018.00043
  91. Chen Y., Gu X., Ou R., Zhang L., Hou Y., Liu K., Cao B., Wei Q., Li C., Song W., Zhao B., Wu Y., Cheng J., Shang H. (2020) Evaluating the role of SNCA, LRRK2, and GBA in Chinese patients with early-onset Parkinson’s disease. Mov. Disord. 35(11), 2046‒2055. https://doi.org/10.1002/mds.28191
  92. Yu Z., Wang T., Xu J., Wang W., Wang G., Chen C., Zheng L., Pan L., Gong D., Li X., Qu H., Li F., Zhang B., Le W., Han F. (2015) Mutations in the glucocerebrosidase gene are responsible for Chinese patients with Parkinson’s disease. J. Hum. Genet. 60(2), 85‒90. https://doi.org/10.1038/jhg.2014.110
  93. Zhang Y., Sun Q.Y., Zhao Y.W., Shu L., Guo J.F., Xu Q., Yan X.X., Tang B.S. (2015) Effect of GBA mutations on phenotype of Parkinson’s disease: a study on Chinese population and a meta-analysis. Parkinsons Dis. 2015, 916971. https://doi.org/10.1155/2015/916971
  94. Smith L., Schapira A.H.V. (2022) GBA variants and Parkinson’s disease: mechanisms and treatments. Cells. 11(8), 1261. https://doi.org/10.3390/cells11081261
  95. Creese B., Bell E, Johar I., Francis P., Ballard C., Aarsland D. (2018) Glucocerebrosidase mutations and neuropsychiatric phenotypes in Parkinson’s disease and Lewy body dementias: review and meta-analyses. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177(2), 232‒241. https://doi.org/10.1002/ajmg.b.32549
  96. Alcalay R.N., Levy O.A., Waters C.C., Fahn S., Ford B., Kuo S.H., Mazzoni P., Pauciulo M.W., Nichols W.C., Gan-Or Z., Rouleau G.A., Chung W.K., Wolf P., Oliva P., Keutzer J., Marder K., Zhang X. (2015) Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations. Brain. 138(9), 2648–2658. https://doi.org/10.1093/brain/awv179
  97. Rocha E.M., Smith G.A., Park E., Cao H., Brown E., Hallett P., Isacson O. (2015) Progressive decline of glucocerebrosidase in aging and Parkinson’s disease. Ann. Clin. Transl. Neurol. 2(4), 433‒438. https://doi.org/10.1002/ACN3.177
  98. Pchelina S., Emelyanov A., Baydakova G., Andoskin P., Senkevich K., Nikolaev M., Miliukhina I., Yakimovskii A., Timofeeva A., Fedotova E., Abramycheva N., Usenko T., Kulabukhova D., Lavrinova A., Kopytova A., Garaeva L., Nuzhnyi E., Illarioshkin S., Zakharova E. (2017) Oligomeric α-synuclein and glucocerebrosidase activity levels in GBA-associated Parkinson’s disease. Neurosci. Lett. 636, 70–76. https://doi.org/10.1016/j.neulet.2016.10.039
  99. Mazzulli J.R., Xu Y.H., Sun Y., Knight A.L., McLean P.J., Caldwell G.A., Sidransky E., Grabowski G.A., Krainc D. (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 146(1), 37‒52. https://doi.org/10.1016/j.cell.2011.06.001
  100. Fredriksen K., Aivazidis S., Sharma K., Burbidge K.J., Pitcairn C., Zunke F., Gelyana E., Mazzulli J.R. (2021) Pathological α-syn aggregation is mediated by glycosphingolipid chain length and the physiological state of α-syn in vivo. Proc. Natl. Acad. Sci. USA. 118(50), e2108489118. 10.1073/pnas.2108489118' target='_blank'>https://doi: 10.1073/pnas.2108489118
  101. Zunke F., Moise A.C., Belur N.R., Gelyana E., Stojkovska I., Dzaferbegovic H., Toker N.J., Jeon S., Fredriksen K., Mazzulli J.R. (2018) Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide. Neuron. 97(1), 92‒107.e10. 10.1016/j.neuron.2017.12.012' target='_blank'>https://doi: 10.1016/j.neuron.2017.12.012
  102. Murphy K.E., Halliday G.M. (2014) Glucocerebrosidase deficits in sporadic Parkinson disease. Autophagy. 10(7), 1350–1351. https://doi.org/10.4161/auto.29074
  103. Du T.T., Wang L., Duan C.L., Lu L.L., Zhang J.L., Gao G., Qiu X.B., Wang X.M., Yang H. (2015) GBA deficiency promotes SNCA/α-synuclein accumulation through autophagic inhibition by inactivated PPP2A. Autophagy. 11(10), 1803‒1820. https://doi.org/10.1080/15548627.2015.1086055
  104. Toffoli M., Smith L., Schapira A.H.V. (2020) The biochemical basis of interactions between glucocerebrosidase and alpha-synuclein in GBA1 mutation carriers. J. Neurochem. 154(1), 11‒24. https://doi.org/10.1111/jnc.14968
  105. Magalhaes J., Gegg M.E., Migdalska-Richards A., Doherty M.K., Whitfield P.D., Schapira A.H.V. (2016) Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum. Mol. Genet. 25(16), 3432‒3445. https://doi.org/10.1093/hmg/ddw185
  106. Usenko T., Bezrukova A., Rudenok M.M., Basharova K., Shadrina M.I., Slominsky P.A., Zakharova E., Pchelina S. (2023) Whole transcriptome analysis of substantia nigra in mice with MPTP-induced parkinsonism bearing defective glucocerebrosidase activity. Int. J. Mol. Sci. 24(15), 12164. https://doi.org/10.3390/ijms241512164
  107. Usenko T., Bezrukova A., Basharova K., Panteleeva A., Nikolaev M., Kopytova A., Miliukhina I., Emelyanov A., Zakharova E., Pchelina S. (2021) Comparative transcriptome analysis in monocyte-derived macrophages of asymptomatic GBA mutation carriers and patients with GBA-associated Parkinson’s disease. Genes (Basel). 12(10), 1545. https://doi.org/10.3390/genes12101545
  108. Bogetofte H., Ryan B.J., Jensen P., Schmidt S.I., Vergoossen D.L.E., Barnkob M.B., Kiani L.N., Chughtai U., Heon-Roberts R., Caiazza M.C., McGuinness W., Márquez-Gómez R., Vowles J., Bunn F.S., Brandes J., Kilfeather P., Connor J.P., Fernandes H.J.R., Caffrey T.M., Meyer M., Cowley S.A., Larsen M.R., Wade-Martins R. (2023) Post‒translational proteomics platform identifies neurite outgrowth impairments in Parkinson’s disease GBA-N370S dopamine neurons. Cell Rep. 42(3), 112180. https://doi.org/10.1016/j.celrep.2023.112180
  109. Kinghorn K.J., Grönke S., Castillo-Quan J.I., Woodling N.S., Li L., Sirka E., Gegg M., Mills K., Hardy J., Bjedov I., Partridge L. (2016) A Drosophila model of neuronopathic Gaucher disease demonstrates lysosomal-autophagic defects and altered mTOR signaling and is functionally rescued by rapamycin. J. Neurosci. 36(46), 11654‒11670. 10.1523/JNEUROSCI.4527-15.2016' target='_blank'>https://doi: 10.1523/JNEUROSCI.4527-15.2016
  110. Lu J., Wu M., Yue Z. (2020) Autophagy and Parkinson’s disease. Adv. Exp. Med. Biol. 1207, 21–51. https://doi.org/10.1007/978-981-15-4272-5-2
  111. Atashrazm F., Hammond D., Perera G., Dobson-Stone C., Mueller N., Pickford R., Kim W.S., Kwok J.B., Lewis S.J.G., Halliday G.M., Dzamko N. (2018) Reduced glucocerebrosidase activity in monocytes from patients with Parkinson’s disease. Sci. Rep. 8(1), 15446. https://doi.org/10.1038/s41598-018-33921-x
  112. Di Maio R., Hoffman E.K., Rocha E.M., Keeney M.T., Sanders L.H., De Miranda B.R., Zharikov A., Van Laar A., Stepan A.F., Lanz T.A., Kofler J.K., Burton E.A., Alessi D.R., Hastings T.G., Greenamyre J.T. (2018) LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl. Med. 10(451), eaar5429. https://doi.org/10.1126/scitranslmed.aar5429
  113. Neumann J., Bras J., Deas E., O'Sullivan S.S., Parkkinen L., Lachmann R.H., Li A., Holton J., Guerreiro R., Paudel R., Segarane B., Singleton A., Lees A., Hardy J., Houlden H., Revesz T., Wood N.W. (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain. 132(7), 1783‒1794. https://doi.org/10.1093/brain/awp044
  114. Faivre S., Kroemer G., Raymond E. (2006) Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov. 5(8), 671‒688. https://doi.org/10.1038/nrd2062
  115. Sarkar S., Ravikumar B., Floto R.A., Rubinsztein D.C. (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 16(1), 46‒56. https://doi.org/10.1038/cdd.2008.110
  116. Steele J.W., Ju S., Lachenmayer M.L., Liken J., Stock A., Kim S.H., Delgado L.M., Alfaro I.E., Bernales S., Verdile G., Bharadwaj P., Gupta V., Barr R., Friss A., Dolios G., Wang R., Ringe D., Protter A.A., Martins R.N., Ehrlich M.E., Yue Z., Petsko G.A., Gandy S. (2013) Latrepirdine stimulates autophagy and reduces accumulation of α-synuclein in cells and in mouse brain. Mol. Psychiatry. 18(8), 882‒888. https://doi.org/10.1038/mp.2012.115
  117. Ravikumar B., Vacher C., Berger Z., Davies J.E., Luo S., Oroz L.G., Scaravilli F, Easton D.F., Duden R., O’Kane C.J., Rubinsztein D.C. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36(6), 585‒595. https://doi.org/10.1038/ng1362
  118. Choi A.M.K., Ryter S.W., Levine B. (2013) Autophagy in human health and disease. N. Engl. J. Med. 368(7), 651‒662. doi: 10.1056/nejmra1205406
  119. Thoreen C.C., Kang S.A., Chang J.W., Liu Q, Zhang J., Gao Y., Reichling L.J., Sim T., Sabatini D.M., Gray N.S. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284(12), 8023‒8032. https://doi.org/10.1074/jbc.M900301200
  120. Zhao J., Zhai B., Gygi S.P., Goldberg A.L. (2015) MTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc. Natl. Acad. Sci. USA. 112(52), 15790‒15797. https://doi.org/10.1073/pnas.1521919112
  121. Tian T., Li X., Zhang J. (2019) mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int. J. Mol. Sci. 20(3), 755. https://doi.org/10.3390/ijms20030755
  122. Hua H., Kong Q., Zhang H., Wang J., Luo T., Jiang Y. (2019) Targeting mTOR for cancer therapy. J. Hematol. Oncol. 12(1), 71. https://doi.org/10.1186/s13045-019-0754-1
  123. Buzzai M., Jones R.G., Amaravadi R.K., Lum J.J., DeBerardinis R.J., Zhao F., Viollet B., Thompson C.B. (2007) Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67(14), 6745‒6752. https://doi.org/10.1158/0008-5472.CAN-06-4447
  124. Xie Z., Lau K., Eby B., Lozano P., He C., Pennington B., Li H., Rathi S., Dong Y., Tian R., Kem D., Zou M.H. (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes. 60(6), 1770‒1778. https://doi.org/10.2337/db10-0351
  125. Xu J., Ao Y.L., Huang C., Song X., Zhang G., Cui W., Wang Y., Zhang X.Q., Zhang Z. (2022) Harmol promotes α-synuclein degradation and improves motor impairment in Parkinson’s models via regulating autophagy-lysosome pathway. NPJ Parkinsons Dis. 8(1), 100. https://doi.org/10.1038/s41531-022-00361-4
  126. Abulimiti G., Zeng J., Aimaiti M., Lei X., Mi N. (2022) Harmol hydrochloride dihydrate induces autophagy in neuro cells and promotes the degradation of α-Syn by Atg5/Atg12-dependent pathway. Food Sci. Nutr. 10(12), 4371‒7379. https://doi.org/10.1002/fsn3.3031
  127. Liu W., Zhu S.O., Guo Y.L., Tu L.F, Zhen Y.Q., Zhao R.Y., Ou-Yang L., Kurihara H., He R.R., Liu B. (2023) BL-918, a small-molecule activator of ULK1, induces cytoprotective autophagy for amyotrophic lateral sclerosis therapy. Acta Pharmacol. Sin. 44(3), 524‒537. https://doi.org/10.1038/s41401-022-00972-w
  128. Williams R.S.B., Cheng L., Mudge A.W., Harwood A.J. (2002) A common mechanism of action for three mood-stabilizing drugs. Nature. 417(6886), 292‒295. https://doi.org/10.1038/417292a
  129. Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J., Rubinsztein D.C. (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170(7), 1101‒1111. https://doi.org/10.1083/jcb.200504035
  130. Shaltiel G., Shamir A., Shapiro J., Ding D., Dalton E., Bialer M., Harwood A.J., Belmaker R.H., Greenberg M.L., Agam G. (2004) Valproate decreases inositol biosynthesis. Biol. Psychiatry. 56(11), 868‒874. https://doi.org/10.1016/j.biopsych.2004.08.027
  131. Sarkar S., Rubinsztein D.C. (2014) Inositol and IP3 levels regulate autophagy. Autophagy. 2(2), 132‒134. https://doi.org/10.4161/auto.2387
  132. Zhang L., Yu J., Pan H., Hu P., Hao Y., Cai W., Zhu H., Yu A.D., Xie X., Ma D., Yuan J. (2007) Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl. Acad. Sci. USA. 104(48), 19023‒19028. https://doi.org/10.1073/pnas.0709695104
  133. Menzies F.M., Garcia-Arencibia M., Imarisio S., O’Sullivan N.C., Ricketts T., Kent B.A., Rao M.V., Lam W., Green-Thompson Z.W., Nixon R.A., Saksida L.M., Bussey T.J., O ’Kane C.J., Rubinsztein D.C. (2015) Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity. Cell Death Differ. 22(3), 433‒444. https://doi.org/10.1038/cdd.2014.151
  134. Bensaada I., Robin B., Perez J., Salemkour Y., Chipont A., Camus M., Lemoine M., Guyonnet L., Lazareth H., Letavernier E., Hénique C., Tharaux P.L., Lenoir O. (2021) Calpastatin prevents angiotensin II-mediated podocyte injury through maintenance of autophagy. Kidney Int. 100(1), 90‒106. https://doi.org/10.1016/j.kint.2021.02.024
  135. Khan S.H., Kumar R. (2017) Trehalose induced conformational changes in the amyloid-β peptide. Pathol. Res. Pract. 213(6), 643‒648. https://doi.org/10.1016/j.prp.2017.04.018
  136. Chen X., Li M., Li L., Xu S., Huang D., Ju M., Huang J., Chen K., Gu H. (2016). Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway. Sci. Rep. 6, 28423. https://doi.org/10.1038/srep28423
  137. Sarkar S., Perlstein E.O., Imarisio S., Pineau S., Cordenier A., Maglathlin R.L., Webster J.A., Lewis T.A., O’Kane C.J., Schreiber S.L., Rubinsztein D.C. (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat. Chem. Biol. 3(6), 331‒338. https://doi.org/10.1038/nchembio883
  138. Wu Y., Li X., Zhu J.X., Xie W., Le W., Fan Z., Jankovic J., Pan T. (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals. 19(3), 163‒174. https://doi.org/10.1159/000328516
  139. Zheng X.F., Fiorentino D., Chen J., Crabtree G.R., Schreiber S.L. (1995) TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell. 82(1), 121‒130. https://doi.org/10.1016/0092-8674(95)90058-6
  140. Jiang T.F., Zhang Y.J., Zhou H.Y., Wang H.M., Tian L.P., Liu J., Ding J.Q., Chen S.D. (2013) Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J. Neuroimmune Pharmacol. 8(1), 356‒369. https://doi.org/10.1007/s11481-012-9431-7
  141. Brown R.A., Voit A., Srikanth M.P., Thayer J.A., Kingsbury T.J., Jacobson M.A., Lipinski M.M., Feldman R.A., Awad O. (2019) MTOR hyperactivity mediates lysosomal dysfunction in Gaucher’s disease iPSC-neuronal cells. Dis. Model Mech. 12(10), dmm038596. https://doi.org/10.1242/dmm.038596
  142. Webb J.L., Ravikumar B., Atkins J., Skepper J.N., Rubinsztein D.C. (2003) α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278(27), 25009‒25013. https://doi.org/10.1074/jbc.M300227200
  143. Sarkar S., Davies J.E., Huang Z., Tunnacliffe A., Rubinsztein D.C. (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 282(8), 5641‒5652. https://doi.org/10.1074/jbc.M609532200
  144. Hull A., Atilano M.L., Gergi L., Kinghorn K.J. (2024) Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson’s diseases: insights for drug discovery. Trans. R. Soc. Lond. B Biol. Sci. 379(1899), 20220381. https://doi.org/10.1098/rstb.2022.0381
  145. Kopytova A.E., Rychkov G.N., Nikolaev M.A., Baydakova G.V., Cheblokov A.A., Senkevich K.A., Bogdanova D.A., Bolshakova O.I., Miliukhina I.V., Bezrukikh V.A., Salogub G.N., Sarantseva S.V., Usenko T.C., Zakharova E.Y., Emelyanov A.K., Pchelina S.N. (2021) Ambroxol increases glucocerebrosidase (GCase) activity and restores GCase translocation in primary patient-derived macrophages in Gaucher disease and Parkinsonism. Parkinsonism Relat. Disord. 84, 112‒121. https://doi.org/10.1016/j.parkreldis.2021.02.003
  146. Kopytova A.E., Rychkov G.N., Cheblokov A.A., Grigor’eva E.V., Nikolaev M.A., Yarkova E.S., Sorogina D.A., Ibatullin F.M., Baydakova G.V., Izyumchenko A.D., Bogdanova D.A., Boitsov V.M., Rybakov A.V., Miliukhina I.V., Bezrukikh V.A., Salogub G.N., Zakharova E.Y., Pchelina S.N., Emelyanov A.K. (2023) Potential binding sites of pharmacological chaperone NCGC00241607 on mutant β-glucocerebrosidase and its efficacy on patient-derived cell cultures in Gaucher and Parkinson’s disease. Int. J. Mol. Sci. 24(10), 112‒121. https://doi.org/10.3390/ijms24109105
  147. West A.B. (2017) Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Exp. Neurol. 298(Pt. B), 236‒245. https://doi.org/10.1016/j.expneurol.2017.07.019
  148. Lu J.H., Tan J.Q., Durairajan S.S.K., Liu L.F., Zhang Z.H., Ma L., Shen H.M., Chan H.Y.E., Li M. (2012) Isorhynchophylline, a natural alkaloid, promotes the degradation of α-synuclein in neuronal cells via inducing autophagy. Autophagy. 8(1), 98‒108. https://doi.org/10.4161/auto.8.1.18313
  149. Ouyang L., Zhang L., Zhang S., Yao D., Zhao Y., Wang G., Fu L., Lei P., Liu B. (2018) Small-molecule activator of UNC-51-like kinase 1 (ULK1) that induces cytoprotective autophagy for Parkinson’s disease treatment. J. Med. Chem. 61(7), 2776‒2792. https://doi.org/10.1021/acs.jmedchem.7b01575
  150. Norradee C., Khwanraj K., Balit T., Dharmasaroja P. (2023) Evaluation of the combination of metformin and rapamycin in an MPP+-treated SH-SY5Y model of Parkinson’s disease. Adv. Pharmacol. Pharm. Sci. 2023, 3830861. https://doi.org/10.1155/2023/3830861
  151. Pupyshev A.B., Tenditnik M.V., Ovsyukova M.V., Akopyan A.A., Dubrovina N.I., Tikhonova M.A. (2021) Restoration of Parkinson’s disease-like deficits by activating autophagy through mTOR-dependent and mTOR-independent mechanisms in pharmacological and transgenic models of Parkinson’s disease in mice. Bull. Exp. Biol. Med. 171(4), 425‒430. https://doi.org/10.1007/s10517-021-05242-z
  152. Van Skike C.E., Hussong S.A., Hernandez S.F., Banh A.Q., DeRosa N., Galvan V. (2021) mTOR attenuation with rapamycin reverses neurovascular uncoupling and memory deficits in mice modeling Alzheimer’s disease. J. Neurosci. 41(19), 4305‒4320. https://doi.org/10.1523/JNEUROSCI.2144-20.2021
  153. Deleidi M., Gasser T. (2013) The role of inflammation in sporadic and familial Parkinson’s disease. Cell Mol. Life Sci. 70(22), 4259‒4273. https://doi.org/10.1007/s00018-013-1352-y
  154. Weichhart T., Hengstschläger M., Linke M. (2015) Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15(10), 599–614. https://doi.org/10.1038/nri3901
  155. Hinkle J.T., Patel J., Panicker N., Karuppagounder S.S., Biswas D., Belingon B., Chen R., Brahmachari S., Pletnikova O., Troncoso J.C., Dawson V.L., Dawson T.M. (2022) STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proc. Natl. Acad. Sci. USA. 119(15), e2118819119. https://doi.org/10.1073/pnas.2118819119
  156. Lee J.J., Andreazza S., Whitworth A.J. (2020) The STING pathway does not contribute to behavioural or mitochondrial phenotypes in Drosophila Pink1/parkin or mtDNA mutator models. Sci. Rep. 10(1), 2693. https://doi.org/10.1038/s41598-020-59647-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of autophagy processes. a — Chaperone-mediated autophagy; b — microautophagy; c — macroautophagy. From here on: the figures were created using the BioRender program (https://www.biorender.com).

Download (608KB)
3. Fig. 2. mTOR complexes and regulation of macroautophagy via the mTORC1 pathway. a — Structure of mTORC1 and mTORC2 complexes; b — activation of mTORC1.

Download (513KB)
4. Fig. 3. mTOR-independent regulation of autophagy via the cAMP/EPAC/PLC-IP3, Ca2+/calpain, and inositol (Ins) signaling pathways. Activation of receptors via the α-subunit of heterotrimeric G protein (GSA) and adenylate cyclase (AC) leads to an increase in the level of cyclic AMP (cAMP), which activates the EPAC protein. This then leads to the activation of phospholipase C (PLC), which hydrolyzes phosphatidylinositol-4,5-bisphosphate (PIP2) to form inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 binds to its receptors on the endoplasmic reticulum (ER), which causes the release of Ca2+ ions into the cytoplasm. This activates a family of Ca2+-dependent cysteine ​​proteases, the calpains, which cleave and activate GSA. This in turn enhances AC activity, which increases cAMP levels and creates a feedback loop. PIP2 is hydrolyzed by 5'-phosphatase and inositol phosphatase (IPPase) to inositol-1-phosphate, which is further cleaved by inositol monophosphatase (IMPase) to free inositol, which is required for downstream signaling. Increased intracellular inositol or IP3 levels inhibit autophagosome synthesis.

Download (236KB)
5. Fig. 4. Scheme of RNA sequencing and analysis of data from primary culture of peripheral blood macrophages from patients with GBA1-PD, asymptomatic carriers of mutations in the GBA1 gene (GBA1 carriers) and neurologically healthy individuals, as well as samples of SN mice with combined induction of parkinsonism with GCase dysfunction (MPTP+CE), mice with induction of parkinsonism (MPTP), mice with GCase dysfunction (CE) and mice with NaCl injection (control).

Download (437KB)
6. Fig. 5. Schematic representation of the main potential autophagy targets for Parkinson's disease therapy.

Download (904KB)

Copyright (c) 2025 Russian Academy of Sciences