Genome mapping of RNA‒DNA hybrids in Escherichia coli
- Authors: Oleynikova K.Y.1, Ruzov A.S.1, Zhigalova N.A.1
-
Affiliations:
- FRC Fundamentals of Biotechnology of the Russian Academy of Sciences
- Issue: Vol 94, No 4 (2025)
- Pages: 351-355
- Section: SHORT COMMUNICATIONS
- URL: https://rjpbr.com/0026-3656/article/view/686880
- DOI: https://doi.org/10.31857/S0026365625040045
- ID: 686880
Cite item
Abstract
We have mapped RNA‒DNA hybrids in the prokaryotic genome for the first time. Using the S9.6 antibody immunoprecipitation method (S9.6-DRIP) followed by whole-genome sequencing, we identified 219 unique peaks of RNA‒DNA hybrids in the genome of Escherichia coli TOP10. These peaks corresponded to 219 different genes and were predominantly distributed in the coding regions of the genome (88.12%). Analysis of individual genes containing RNA‒DNA hybrids revealed that they encode enzymes involved in important energy and metabolic processes in prokaryotes, such as lipoic acid synthesis.
Full Text

About the authors
K. Y. Oleynikova
FRC Fundamentals of Biotechnology of the Russian Academy of Sciences
Email: nzhigalova@gmail.com
K.G. Skryabin Institute of Bioengineering
Russian Federation, Moscow, 119071A. S. Ruzov
FRC Fundamentals of Biotechnology of the Russian Academy of Sciences
Email: nzhigalova@gmail.com
K.G. Skryabin Institute of Bioengineering
Russian Federation, Moscow, 119071N. A. Zhigalova
FRC Fundamentals of Biotechnology of the Russian Academy of Sciences
Author for correspondence.
Email: nzhigalova@gmail.com
K.G. Skryabin Institute of Bioengineering
Russian Federation, Moscow, 119071References
- Abakir A., Giles T. C., Cristini A., Foster J. M., Dai N., Starczak M., Crutchley J., Flatt L., Young L., Gaffney D. J., Denning C., Dalhus B., Emes R. D., Gackowski D., Corrêa I. R. Jr., Garcia-Perez J.L., Klungland A., Gromak N., Ruzov A. N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells // Nat. Genet. 2020. V. 1. P. 48‒55. https://doi.org/10.1038/s41588-019-0549-x
- Boguslawski S. J., Smith D. E., Michalak M. A., Mickelson K. E., Yehle C. O., Patterson W. L., Carrico R. J. Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids // J. Immunol. Methods. 1986. V. 89. P. 123–130. https://doi.org/10.1016/0022-1759(86)90040-2
- Brochu J., Vlachos-Breton E.Â., Sutherland S., Martel M., Drolet M. Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli // PLoS Genet. 2018. V. 14. Art. e1007668. https://doi.org/10.1371/journal.pgen.1007668
- Drolet M., Phoenix P., Menzel R., Masse E., Liu L. F., Crouch R. J. Overexpression of RNase H partially complements the growth defect of an Escherichia coli ΔtopA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 3526‒3530. https://doi.org/10.1073/pnas.92.8.3526
- Ewels P., Magnusson M., Lundin S., Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report // Bioinformatics. 2016. V. 32. P. 3047‒3048. https://doi.org/10.1093/bioinformatics/btw354
- Gan W., Guan Z., Liu J., Gui T., Shen K., Manley J. L., Li X. R-loop-mediated genomic instability is caused by impairment of replication fork progression // Genes Dev. 2011. V. 25. P. 2041–2056. https://doi.org/10.1101/gad.17010011
- Garcia-Muse T., Aguilera A. R loops: from physiological to pathological roles // Cell. 2019. V. 179. P. 604–618. https://doi.org/10.1016/j.cell.2019.08.055
- Ginno P. A., Lott P. L., Christensen H. C., Korf I., Chédin F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters // Mol. Cell. 2012. V. 45. P. 814–825. https://doi.org/10.1016/j.molcel.2012.01.017
- Holt I. J. R-loops and mitochondrial DNA metabolism // Methods Mol. Biol. 2022. V. 2022:2528. P. 173‒202. https://doi.org/10.1007/978-1-0716-2477-7_12
- Huertas P., Aguilera A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination // Mol. Cell. 2003. V. 12. P. 711‒721. https://doi.org/10.1016/j.molcel.2003.08.010
- Jenuth J. P. The NCBI. Publicly available tools and resources on the web // Bioinformatics methods and protocols. Methods in Molecular Biology™ / Eds. Misener S., Krawetz S. A. V. 132. Totowa, NJ: Humana Press, 1999. P. 301‒312. https://doi.org/10.1385/1-59259-192-2:301
- Jordan S. W., Cronan J. E., Jr. The Escherichia coli lipB gene encodes lipoyl (octanoyl)-acyl carrier protein: protein transferase // J. Bacteriol. 2003. V. 185. P. 1582–1589. https://doi.org/10.1128/JB.185.5.1582-1589.2003
- Kim S., Kim Y., Yoon S. Y. Overexpression of YbeD in Escherichia coli enhances thermotolerance // J. Microbiol. Biotechnol. 2019. V. 29. P. 401‒409. https://doi.org/10.4014/jmb.1901.01036
- Kozlov G., Elias D., Semesi A., Yee A., Cygler M., Gehring K. Structural similarity of YbeD protein from Escherichia coli to allosteric regulatory domains // J. Bacteriol. 2004. V. 186. P. 8083–8088. https://doi.org/10.1128/jb.186.23.8083-8088.2004
- Leela J. K., Raghunathan N., Gowrishankar J. Topoisomerase I essentiality, DnaA-independent chromosomal replication, and transcription-replication conflict in Escherichia coli // J. Bacteriol. 2021. V. 203. Art. e0019521. https://doi.org/10.1128/jb.00195-21
- Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map format and SAMtools // Bioinformatics. 2009. V. 25 P. 2078‒2079. https://doi.org/10.1093/bioinformatics/btp352
- Li R., Liu B., Yuan X., Chen Z. A bibliometric analysis of research on R-loop: landscapes, highlights and trending topics // DNA Repair (Amst). 2023. V. 127. Art. 103502. https://doi.org/10.1016/j.dnarep.2023.103502
- Raghunathan N., Kapshikar R. M., Leela J. K., Mallikarjun J., Bouloc P., Gowrishankar J. Genome-wide relationship between R-loop formation and antisense transcription in Escherichia coli // Nucleic Acids Res. 2018. V. 46. P. 3400–3411. https://doi.org/10.1093/nar/gky118
- Ramírez F., Dündar F., Diehl S., Grüning B.A., Manke T. deepTools: a flexible platform for exploring deep-sequencing data // Nucleic Acids Res. 2014. V. 42 (W1). P. W187‒W191. https://doi.org/10.1093/nar/gku365
- Renaudin X., Venkitaraman A. R. A mitochondrial response to oxidative stress mediated by unscheduled RNA‒DNA hybrids (R-loops) // Mol. Cell. Oncol. 2021. V. 8. Art. 2007028. https://doi.org/10.1080/23723556.2021.2007028
- Sanz L. A., Hartono S. R., Lim Y. W., Steyaert S., Rajpurkar A., Ginno P. A., Xu X., Chédin F. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals // Mol. Cell. 2016. V. 63. P. 167‒178. https://doi.org/10.1016/j.molcel.2016.05.032
- Skourti-Stathaki K., Proudfoot N. J., Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination // Mol Cell. 2011. V. 42. P. 794‒805. https://doi.org/10.1016/j.molcel.2011.04.026
- Thomas M., White R. L., Davis R. W. Hybridization of RNA to double-stranded DNA: formation of R-loops // Proc. Natl. Acad. Sci. USA. 1976. V. 73. P. 2294‒2298. https://doi.org/10.1073/pnas.73.7.2294
- Tripathi D., Oldenburg D. J., Bendich A. J. Ribonucleotide and R-loop damage in plastid DNA and mitochondrial DNA during maize development // Plants (Basel). 2023. V. 12. Art. 3161. https://doi.org/10.3390/plants12173161
- Xu W., Xu H., Li K., Fan Y., Liu Y., Yang X., Sun Q. The R-loop is a common chromatin feature of the Arabidopsis genome // Nature Plants. 2017. V. 3. P. 704‒714. https://doi.org/10.1038/s41477-017-0004-x
- Yu G., Wang L. G., He Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization // Bioinformatics. 2015. V. 31. P. 2382‒2383. https://doi.org/10.1093/bioinformatics/btv145
- Zeller P., Padeken J., van Schendel R., Kalck V., Tijsterman M., Gasser S. M. Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability // Nature Genet. 2016. V. 48. P. 1385‒1395. https://doi.org/10.1038/ng.3672
- Zhang Y., Liu T., Meyer C. A., Eeckhoute J., Johnson D. S., Bernstein B. E., Liu X. S. Model-based analysis of ChIP-Seq (MACS) // Genome Biol. 2008. V. 9. Art. R137. P. 1‒9. https://doi.org/10.1186/gb-2008-9-9-r137
Supplementary files
