On the calculation of electrokinetic potential in detonation nanodiamond dispersions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The applicability of various approximations of the theory of electrophoresis for calculating the electrokinetic potential in real nanodisperse systems was evaluated on the example of the polydispersed aqueous sol of thermooxidized detonation nanodiamond containing aggregates of nanoparticles, depending on the concentration and pH of background electrolyte solutions (NaCl). It was found that at low potentials |ζW| < 25 mV calculated for the primary particles in the framework of the Wiersema’s model, taking into account particle aggregation and aggregate porosity practically does not affect the electrokinetic potential. In the range |ζW| 25–50 mV, the most reliable values of the electrokinetic potentials of aggregates seem to be obtained using the Miller’s equation for ion-conducting particles, taking into account their real porosities providing that the potential is constant. At |ζW| > 50 mV, knowing the real size of the aggregates, assuming that they are monolithic, the Overbeek’s equation with Oshima’s analytical expressions of the functions f3r) and f4r) can be used to calculate the electrokinetic potentials.

Full Text

Restricted Access

About the authors

L. E. Ermakova

Санкт-Петербургский государственный университет

Email: anna.volkova@spbu.ru
Russian Federation, Санкт-Петербург

N. S. Chuikov

Санкт-Петербургский государственный университет

Email: anna.volkova@spbu.ru
Russian Federation, Санкт-Петербург

A. V. Volkova

Санкт-Петербургский государственный университет

Author for correspondence.
Email: anna.volkova@spbu.ruро
Russian Federation, Санкт-Петербург

References

  1. Xu J., Chow E. Biomedical applications of nanodiamonds: From drug-delivery to diagnostics // SLAS Technology. 2023. V. 28. № 4. P. 214–222. https://doi.org/10.1016/j.slast.2023.03.007
  2. Wang X., Sang D., Zou L. et al. Multiple bioimaging applications based on the excellent properties of nanodiamond: A Review // Molecules. 2023. V. 28. P. 4063. https://doi.org/10.3390/molecules28104063
  3. Turcheniuk K., Mochalin V.N. Biomedical applications of nanodiamond // Nanotechnology. 2017. V. 28. P. 252001–252027. https://doi.org/10.1088/1361-6528/aa6ae4
  4. Pan F., Khan M., Ragab A.H. et al. Recent advances in the structure and biomedical applications of nanodiamonds and their future perspectives // Materials & Design. 2023. V. 233. P. 112179. https://doi.org/10.1016/j.matdes.2023.112179
  5. Kryshtal A.P., Mchedlov-Petrossyan N.O, Laguta A.N. et al. Primary detonation nanodiamond particles: Their core-shell structure and the behavior in organo-hydrosols // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 614. P. 126079. https://doi.org/10.1016/j.colsurfa.2020.126079
  6. Mchedlov-Petrossyan N.O., Kriklya N.N., Kryshtal A.P. et al. The interaction of the colloidal species in hydrosols of nanodiamond with inorganic and organic electrolytes // Journal of Molecular Liquids. 2019. V. 283. P. 849–859. https://doi.org/10.1016/j.molliq.2019.03.095
  7. Mchedlov-Petrossyan N.O., Kriklya N.N., Laguta A.N., Osawa E. Stability of detonation nanodiamond colloid with respect to inorganic electrolytes and anionic surfactants and solvation of the particles surface in DMSO–H2O organo-hydrosols // Liquids. 2022. V. 2. P. 196–209. https://doi.org/10.3390/liquids2030013
  8. Kulvelis Yu.V., Shvidchenko A.V., Aleksenskii A.E. Stabilization of detonation nanodiamonds hydrosol in physiological media with poly(vinylpyrrolidone) // Diamond and Related Materials. 2018. V. 87. P. 78–89. https://doi.org/10.1016/j.diamond.2018.05.012
  9. Соболева О.А. Устойчивость гидрозолей детонационных наноалмазов в присутствии солей и поверхностно-активных веществ // Коллоидный журнал. 2018. Т. 80. № 3. С. 338–343. https://doi.org/10.7868/S0023291218030114
  10. Сычёв Д.Ю., Жуков А.Н., Голикова Е.В., Суходолов Н.Г. Влияние простых электролитов на коагуляцию гидрозолей монодисперсного отрицательно заряженного детонационного наноалмаза // Коллоидный журнал. 2017. Т. 79. № 6. С. 785–791. https://doi.org/10.7868/S0023291217060118
  11. Gareeva F., Petrova N., Shenderova O., Zhukov A. Electrokinetic properties of detonation nanodiamond aggregates in aqueous KCl solutions // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014. V. 440. P. 202–207. https://doi.org/10.1016/j.colsurfa.2012.08.055
  12. Petrova N., Zhukov A., Gareeva F. et al. Interpretation of electrokinetic measurements of nanodiamond particles // Diamond & Related Materials. 2012. V. 30. P. 62–69. https://doi.org/10.1016/j.diamond.2012.10.004
  13. Жуков А.Н., Гареева Ф.Р., Алексенский А.Е. Комплексное исследование электроповерхностных свойств агломератов детонационного наноалмаза в водных растворах КСl // Коллоидный журнал. 2012. Т. 74. № 4. C. 483–491.
  14. Швидченко А.В., Дидейкин А.Т., Жуков А.Н. Конденсация противоионов в гидрозолях монокристаллических частиц детонационного наноалмаза, полученных отжигом агломератов в атмосфере воздуха // Коллоидный журнал. 2017. Т. 79. № 4. С. 521–524. https://doi.org/10.7868/S0023291217040140
  15. Патент RU2599665C2, 15.10.2013.
  16. Волкова А.В., Белобородов А.А., Водолажский В.А. и др. Влияние рН и концентрации индифферентного электролита на агрегативную устойчивость водного золя детонационного алмаза // Коллоидный журнал. 2024. Т. 86. № 2. С. 169–192. https://doi.org/10.31857/S0023291224020031
  17. Lyklema J. Fundamental of Interface and Colloid Science V. 2. Solid-Liquid Interfaces. London: Academic Press. 1995.
  18. Ohshima H. A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles // Journal of Colloid and Interface Science. 1994. V. 168. P. 269–271. https://doi.org/10.1006/jcis.1994.1419
  19. Wiersema P.H., Loeb A.L., Overbeek J.Th.G. Calculation of the electrophoretic mobility of a spherical colloid particle // Journal of Colloid and Interface Science. 1966. V. 22. P. 78–99. https://doi.org/10.1016/0021-9797(66)90069-5
  20. Overbeek J.T.G. Theorie der Elektrophorese // Fortschrittsberichte über Kolloide und Polymere. Kolloid-Beihefte. 1943. V. 54. № 7–9. P. 287– 364. https://doi.org/10.1007/bf02556774
  21. Ohshima H. Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle // Journal of Colloid and Interface Science. 2001. V. 239. P. 587–590. https://doi.org/10.1006/jcis.2001.7608
  22. Levine S., Neale G.H. The prediction of electrokinetic phenomena within multiparticle systems. I. Electrophoresis and electroosmosis // Journal of Colloid and Interface Science. 1974. V. 47. № 2. P. 520–529. https://doi.org/10.1016/0021-9797(74)90284-7
  23. Miller N.P., Berg J.C., O’Brien R.W. The electrophoretic mobility of a porous aggregate // Journal of Colloid and Interface Science. 1992. V. 153. № 1. P. 237–243. https://doi.org/10.1016/0021-9797(92)90315-D
  24. Neale G.H., Nader W.K. Prediction of transport processes within porous media: Diffusive flow processes within an homogeneous swarm of spherical particles // AIChE Journal. 1973. V. 19. P. 112–119. https://doi.org/10.1002/aic.690190116

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. TEM image of primary DND nanoparticles.

Download (200KB)
3. Fig. 2. Dependence of electrophoretic mobility and electrokinetic potential (ζ S), calculated using equation (2), on the concentration of sodium chloride solutions at natural pH.

Download (52KB)
4. Fig. 3. Dependence of electrophoretic mobility and electrokinetic potential (ζS), calculated using equation (2), on pH against the background of 10–3 M NaCl solution.

Download (66KB)
5. Fig. 4. Dependences of the electrokinetic potential of primary DND particles, calculated within the framework of various approximations, on the concentration of sodium chloride solutions at natural pH.

Download (55KB)
6. Fig. 5. Dependences of the electrokinetic potential of primary DND particles, calculated within the framework of various approximations, on pH against the background of a 10–3 M NaCl solution.

Download (65KB)
7. Fig. 6. Image of particles of the initial aqueous DND sol (a) and numerical distribution of particles by size (b) (based on the analysis of about 250 particles), obtained by SEM.

Download (146KB)
8. Fig. 7. Dependence of the number of particles on their radius in the initial aqueous DND ash, determined by the DLS method.

Download (43KB)
9. Fig. 8. Dependences of the electrokinetic potential of DND aggregates, calculated within the framework of the cell model, on the concentration of sodium chloride solutions at natural pH (the ζW – logC dependencies for primary nanoparticles and ζS– logC are given as the maximum and minimum possible absolute values ​​of the zeta potential, respectively).

Download (68KB)
10. Fig. 9. Dependences of the electrokinetic potential of DND aggregates, calculated within the framework of the cell model, on pH against the background of a 10–3 M NaCl solution (the ζW – pH dependencies for primary nanoparticles and ζS – pH are given as the maximum and minimum possible absolute values ​​of the zeta potential, respectively).

Download (78KB)

Copyright (c) 2025 Russian Academy of Sciences