Evaluation of biological properties of surface water for domestic and drinking purposes by biotesting method
- Authors: Khlystov I.A.1, Karpova E.P.1, Bushueva T.V.1, Shtin T.N.1, Kharkova P.K.1
-
Affiliations:
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
- Issue: Vol 104, No 6 (2025)
- Pages: 805-812
- Section: METHODS OF HYGIENIC AND EXPERIMENTAL INVESTIGATIONS
- Published: 15.12.2025
- URL: https://rjpbr.com/0016-9900/article/view/691574
- DOI: https://doi.org/10.47470/0016-9900-2025-104-6-805-812
- EDN: https://elibrary.ru/dgekfq
- ID: 691574
Cite item
Abstract
About the authors
Ivan A. Khlystov
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: hlistovia@ymrc.ru
ORCID iD: 0000-0002-4632-6060
Elizaveta P. Karpova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: karpovaep@ymrc.ru
ORCID iD: 0000-0003-0125-0063
Tatiana V. Bushueva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: bushueva@ymrc.ru
ORCID iD: 0000-0002-5872-2001
Tatiana N. Shtin
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: shtintn@ymrc.ru
ORCID iD: 0000-0002-8846-8016
Polina K. Kharkova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: harkovapk@ymrc.ru
ORCID iD: 0000-0001-7927-0246
References
Peets P., Wang W.C., MacLeod M., Breitholtz M., Martin J.W., Kruve A. MS2Tox machine learning tool for predicting the ecotoxicity of unidentified chemicals in water by nontarget LC-HRMS. Environ. Sci. Technol. 2022; 56(22): 15508–17. https://doi.org/10.1021/acs.est.2c02536 Рахманин Ю.А., Мельцер А.В., Киселев А.В., Ерастова Н.В. Гигиеническое обоснование управленческих решений с использованием интегральной оценки питьевой воды по показателям химической безвредности и эпидемиологической безопасности. Гигиена и санитария. 2017; 96(4): 302–5. https://elibrary.ru/ykuqhh Мамонова И.А., Кошелева И.С., Широков А.А., Гусев Ю.С., Микеров А.Н. Использование культуры клеток человека для оценки токсичности воды (обзор литературы). Гигиена и санитария. 2023; 102(5): 509–15. https://doi.org/10.47470/0016-9900-2023-102-5-509-515 https://elibrary.ru/zifbgn Pamies D., Hartung T. 21st century cell culture for 21st century toxicology. Chem. Res. Toxicol. 2017; 30(1): 43–52. https://doi.org/10.1021/acs.chemrestox.6b00269 Wester R.C., Maibach H.I. Human skin binding and absorption of contaminants from ground and surface water during swimming and bathing. J. Am. Coll. Toxicol. 1989; 8(5): 853–9. https://doi.org/10.3109/10915818909018044 Supe S., Takudage P. Methods for evaluating penetration of drug into the skin: A review. Skin Res. Technol. 2021; 27(3): 299–308. https://doi.org/10.1111/srt.12968 WHO. Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda; 2022. Available at: https://who.int/publications/i/item/9789240045064 Богданова В.Д., Аленицкая М.В., Сахарова О.Б. Некоторые методические подходы к оценке риска здоровью, обусловленного качеством питьевой воды централизованных систем водоснабжения. Здоровье населения и среда обитания – ЗНиСО. 2023; 31(1): 45–52. https://doi.org/10.35627/2219-5238/2023-31-1-45-52 https://elibrary.ru/pqkkdv Vandenberg L.N., Rayasam S.D.G., Axelrad D.A., Bennett D.H., Brown P., Carignan C.C., et al. Addressing systemic problems with exposure assessments to protect the public’s health. Environ. Health. 2023; 21(Suppl. 1): 121. https://doi.org/10.1186/s12940-022-00917-0 Xu X., Yu C., Xu L., Xu J. Emerging roles of keratinocytes in nociceptive transduction and regulation. Front. Mol. Neurosci. 2022; 15: 982202. https://doi.org/10.3389/fnmol.2022.982202 Piipponen M., Li D., Landén N.X. The immune functions of keratinocytes in skin wound healing. Int. J. Mol. Sci. 2020; 21(22): 8790. https://doi.org/10.3390/ijms21228790 Хлыстов И.А., Харькова П.К., Бугаева А.В., Замолоцких Т.В., Штин Т.Н., Гурвич В.Б. Определение индикативных показателей для организации мониторинга источников питьевого водоснабжения при изменении климатических условий. Здоровье населения и среда обитания – ЗНиСО. 2022; 30(9): 84–90. https://doi.org/10.35627/2219-5238/2022-30-9-84-90 https://elibrary.ru/xlhfft Харина Г.В., Алёшина Л.В. Анализ качества подземных вод Свердловской области. Гигиена и санитария. 2023; 102(3): 221–8. https://doi.org/10.47470/0016-9900-2023-102-3-221-228 https://elibrary.ru/scvewt Изиметова М.Ф. Гидрохимическая характеристика крупных водохранилищ Свердловской области. В кн.: Экологический сборник 7: Труды молодых ученых. Всероссийская (с международным участием) молодежная научная конференция. Тольятти; 2019: 199–201. https://doi.org/10.24411/9999-010A-2019-10047 https://elibrary.ru/zdldmt Toxicological Profile for Manganese. Atlanta; 2012. Available at: https://atsdr.cdc.gov/toxprofiles/tp151.pdf Gulcin İ., Alwasel S.H. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes. 2022; 10(1): 132. https://doi.org/10.3390/pr10010132 Ahamed M.I., Lichtfouse E., Altalhi T., eds. Remediation of Heavy Metals. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-80334-6 Bezuglova O.S., Klimenko A. Application of humic substances in agricultural industry. Agronomy. 2022; 12(3): 584. https://doi.org/10.3390/agronomy12030584 Kulikova N.A., Perminova I.V., Badun G.A., Chernysheva M.G., Koroleva O.V., Tsvetkova E.A. Estimation of uptake of humic substances from different sources by Escherichia coli cells under optimum and salt stress conditions by use of tritium-labeled humic materials. Appl. Environ. Microbiol. 2010; 76(18): 6223–30. https://doi.org/10.1128/AEM.00905-10 Pieńko T., Czarnecki J., Równicki M., Wojciechowska M., Wierzba A.J., Gryko D., et al. Vitamin B12-peptide nucleic acids use the BtuB receptor to pass through the Escherichia coli outer membrane. Biophys. J. 2021; 120(4): 725–37. https://doi.org/10.1016/j.bpj.2021.01.004 Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003; 67(4): 593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003 Inam M.A., Khan R., Akram M., Khan S., Park D.R., Yeom I.T. Interaction of arsenic species with organic ligands: Competitive removal from water by coagulation‒flocculation‒sedimentation (C/F/S). Molecules. 2019; 24(8): 1619. https://doi.org/10.3390/molecules24081619 Mahmood Y.H., Al-Hilali B.M., Khalaf A.T. Concentration of residual chlorine and its health effects in the drinking water of the Kirkuk City. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018; 11(1): 29–37. Available at: https://dergipark.org.tr/tr/download/article-file/877290 Amin M.M., Fatehizadeh A., Bagheri N. Rapid assessment of toxicity of chlorinated aqueous solution by dissolved oxygen depletion and optical density bioassays. Environ. Health Eng. Manag. 2020; 7(4): 271–6. https://doi.org/10.34172/EHEM.2020.32 Хлыстов И.А., Бушуева Т.В., Штин Т.Н., Карпова Е.П., Харькова П.К., Бугаева А.В. и др. Применение культуры фибробластов крысы для оценки токсических свойств воды. Здоровье населения и среда обитания – ЗНиСО. 2023; 31(9): 38–44. https://doi.org/10.35627/2219-5238/2023-31-9-38-44 https://elibrary.ru/hsncra Li H., Ding S., Song W., Wang X., Ding J., Lu J. The degradation of dissolved organic matter in black and odorous water by humic substance-mediated Fe(II)/Fe(III) cycle under redox fluctuation. J. Environ. Manage. 2022; 321: 115942. https://doi.org/10.1016/j.jenvman.2022.115942 Barbusiński K. Fenton reaction – controversy concerning the chemistry. Ecol. Chem. Eng. S. 2009; 16(3): 347–58. Yang Z., Shan C., Pignatello J.J., Pan B. Mn(II) acceleration of the picolinic acid-assisted Fenton reaction: New insight into the role of manganese in homogeneous Fenton AOPs. Environ. Sci. Technol. 2022; 56(10): 6621–30. https://doi.org/10.1021/acs.est.1c08796
Supplementary files
