Assessment of genotoxic risks of technogenic pollution of agricultural soils
- 作者: Atoyants A.L.1, Avalyan R.E.1
-
隶属关系:
- Yerevan State University, Research Institute of Biology
- 期: 卷 104, 编号 6 (2025)
- 页面: 772-777
- 栏目: PREVENTIVE TOXICOLOGY AND HYGIENIC STANDARTIZATION
- ##submission.datePublished##: 15.12.2025
- URL: https://rjpbr.com/0016-9900/article/view/691568
- DOI: https://doi.org/10.47470/0016-9900-2025-104-6-772-777
- EDN: https://elibrary.ru/cfjbga
- ID: 691568
如何引用文章
详细
Introduction. Monitoring of soil pollution in man-made and natural areas is an essential part of the ecotoxicological testing system for the state of the environment. In modern conditions of agricultural production, soil pollution with heavy metals (HM) and pesticides is a pressing issue, including in Armenia. HM and pesticides can destroy ecosystems, impede plant growth, and have a detrimental effect on human well-being. Materials and methods. Biotesting of the potential mutagenicity level of soil samples from three agricultural sites in the northeastern areas of Armenia was carried out in the Summer, taking into account the content of HM and pesticides in them. To determine the genetic effects in soil samples, a test for the detection of somatic mutations (Trad-SHM) and a micronucleus test (Trad-MCN) of the model test object Tradescantia (clone 02) were used.Results. According to the main test criteria of both assays, the maximum level of point recessive mutations and frequency of micronuclei was established in soil samples of the pesticide-treated areas of the Lichk area, where their values were 3.6 times higher than the background level according to the Trad-MCN test and 13.9 times higher according to the Trad-SHM test, respectively. A statistically significant positive correlation was shown between the frequency of micronuclei and the concentration of As (p < 0.01; p < 0.001) in the studied soil samples. A significant positive correlation was also found between colorless mutations and stunted stamen hairs in the flower of Tradescantia and the chemical components As, Cr, Cu, Fe, Mn, Ni and Zn ( p < 0.01; p < 0.001) in the studied soil samples. Limitations. This paper presents the results of the total mutagenic activity of the studied soil samples, taking into account their multicomponent composition in the soil-plant system.Conclusion. It is recommended to continue such studies using model test systems aimed at identifying the long-term effects of HM and pesticides on ecosystems and human health, taking into account seasonal changes.Compliance with ethical standards. The study does not require the submission of a biomedical ethics committee opinion or other documents.Contribution: Atoyants A.L. – the concept and design of the study, collection and processing of material; Avalyan R.E. – the concept and design of the study, writing text, statistical processing, editing. All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.Conflict of interest. The authors declare no conflict of interest.Funding. The study had no sponsorship.Received: January 29, 2025 / Accepted: March 26, 2025 / Published: July 31, 2025
作者简介
Anahit Atoyants
Yerevan State University, Research Institute of Biology
Email: a.atoyants@mail.ru
ORCID iD: 0000-0001-5076-5675
Rimma Avalyan
Yerevan State University, Research Institute of Biology
Email: re_avalyan@mail.ru
ORCID iD: 0000-0001-8969-7067
参考
-
Mahmood I., Imadi S.R., Shazadi K., Gul A., Hakeem K.R. Effects of pesticides on the environment. In: Hakeem K., Akhtar M., Abdullah S., eds. Plant, Soil and Microbes. Cham: Springer; 2016: 253–69. https://doi.org/10.1007/978-3-319-27455-3_13 Tepanosyan G., Sahakyan L., Pipoyan D., Saghatelyan A. Risk assessment of heavy metals pollution in urban environment. In: Risk Assessment. Intech Open; 2018: 384. https://doi.org/10.5772/intechopen.70798 Лысов А.К. Проблемы применения средств защиты растений и пути снижения их техногенного воздействия на окружающую среду. АгроЭкоИнженерия. 2023; (3): 34–51. https://doi.org/10.24412/2713-2641-2023-3116-34-50 https://elibrary.ru/juslra Wuana R.A., Okieimen F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices. 2011; 2011(1): 402647. https://doi.org/10.5402/2011/402647 Nagajyoti P.C., Lee K.D., Sreekanth T.V.M. Heavy metals, occurrence and toxicity for plants. A review. Environ. Chem. 2010; (8): 199–216. https://doi.org/10.1007/s10311-010-0297-8 Реутова Н.В., Реутова Т.В., Воробьева Т.И. Определение мутагенного потенциала неорганических соединений ряда тяжелых металлов. Гигиена и санитария. 2011; (5): 55–7. https://elibrary.ru/ohikmd Riyazuddin R., Nisha N., Ejaz B., Khan M.I.R., Kumar M., Ramteke P.W., et al. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules. 2021; 12(1): 43. https://doi.org/10.3390/biom12010043 Lasat M.M. Phytoextraction of toxic metals: a review of biological mechanisms. J. Environ. Qual. 2002; 31(1): 109–20. Mdeni N.L., Adeniji A.O., Okoh A.I., Okoh O.O. Analytical evaluation of carbamate and organophosphate pesticides in human and environmental matrices: a review. Molecules. 2022; 27(3): 618. https://doi.org/10.3390/molecules27030618 Hunanyan S.A. Influence of technogenic emissions on agrochemical indicators of soils in the vicinity of the Vanadzor chemical plant of the Republic of Armenia. News Agr. Sci. 2012; 10(3): 41–4. Кроян С.З., Казарян У.К. Состояние основных типов почв Республики Армения в условиях изменения климата. Почвоведение и агрохимия. 2019; (1): 5–18. https://elibrary.ru/uyciny Обзор ситуации по особо опасным пестицидам (ООП) и альтернативам в Армении, «Армянские женщины за здоровье и здоровую окружающую среду». Ереван; 2020. Доступно: https://awhhe.am Ильин И.Б. Тяжелые металлы и неметаллы в системе почва-растение. Новосибирск; 2012. Водяницкий Ю.Н. Экотоксикологическая оценка опасности тяжелых металлов и металлоидов в почве. Агрохимия. 2012; (2): 75–84. https://elibrary.ru/owxoht Rodríguez M.Á.R., Prieto-García F., Otazo-Sánchez E.M., Méndez J.P., Acevedo-Sandoval O.A. Genotoxicity analysis by presence of arsenic in soil: test Tradescantia micronucleus extracts by clone 4430 (trad-mcn). Biotecnología en el Sector Agropecuario y Agroindustrial. 2019; 17(1): 56–63. Campos C.F., Morelli S., De Campos Júnior E.O., Santos V.S.V., De Morais C.R., Cunha M.C., et al. Assessment of the genotoxic potential of water courses impacted by wastewater treatment effluents using micronucleus assay in plants from the species Tradescantia. J. Toxicol. Environ. Health A. 2019; 82(13): 752–9. https://doi.org/10.1080/15287394.2019.1648345 Перельман А.И., Касимов Н.С. Геохимия ландшафта. М.: Астерия; 2000. Meravi N., Prajapati S.K. Genotoxicity assessment of soil contaminated by metals/metalloids using Tradescantia pallida. East African Scholars J. Agri. Life Sci. 2018; 1(1): 17–21. https://doi.org/10.36349/easjals.2018.v01i01.003 Mizik M., Pichler C., Rainer B., Nersesyan A., Mizikova K., Knasmueller S. Micronucleus assay with tetrad cells of Tradescantia. In: Dhawan A., Bajpayee M., eds. Genotoxicity Assessment. Methods in Molecular Biology, Volume 2031. New York: Humana; 2019. https://doi.org/10.1007/978-1-4939-9646-9_18 Ma T.H., Cabrera G.L., Chen R., Gill B.S., Sandhu S.S., Vandenberg A.L., et al. Tradescantia micronucleus bioassay. Mutat. Res. 1994; 310(2): 221–30. https://doi.org/10.1016/0027-5107(94)90115-5 Ma T.H., Cabrera G.L., Cebulska-Wasilewska A., Chen R., Loarca F., Vandenberg A.L., et al. Tradescantia stamen hair mutation bioassay. Mutat. Res. 1994; 310(2): 211–20. https://doi.org/10.1016/0027-5107(94)90114-7
补充文件
