Efficiency of usage evergreen plants as test objects of hygiene monitoring in an industrial city

封面

如何引用文章

全文:

详细

The use of effective plant test-objects in hygienic monitoring allows obtaining an integrated assessment of the anthropogenic and technogenic impact on the initial chain of the trophic level, which contributes to the adoption of measures to reduce risks to human health.

The aim of the study is the scientific substantiation of the effectiveness of using evergreen plants as test systems for assessing the safety of the environment from priority pollutants-heavy metals.

Material and methods. The research was conducted in Vladikavkaz city, where “Elektrotsink” (Pb - Zn - Cd production), “Pobedit” (W - Mo - Re - Co-production), “Gazoapparat” (electroplating), “Kristall” (production of copper-nickel alloys) and others plants are located. The objects of research were the three most represented types of evergreen plants: Picea abies, Picea pungens, and Thuja occidentalis, widely used in urban gardening. Young and old needles were taken from the trees. The collection districts corresponded to relatively clean areas and areas with increased anthropogenic pollution. The concentration of heavy metals was determined by using a flame atomic absorption spectrometer “Kvant-2A”. We calculated the average value and the standard error of the average, the Pearson correlation coefficient.

Results. Heavy metals were detected in all plant species (regardless of districts for sample collection) in concentrations: Cd: 0.035-2.0; Pb: 0.34-19.7; Cu: 0.006-4.48; Zn: 0.014-449.1 mg/kg. It was proved that the species have a similar tropism to the same elements (correlation coefficients from 0.78 to 0.91); the accumulation of metals in old needles relative to young ones is characterized by a direct relationship for Zn>Pb>Cd (kZn - 1.71, kPb - 1.58 kCd - 1.27) and the reverse for copper (kCu - 0.96).

Conclusion. Patterns of bioaccumulation of heavy metals in the tissues of evergreen plants identify the degree of anthropogenic impact on the environment and determine the prospects for using Picea abies, Picea pungens, and Thuja occidentalis as a sensitive indicator for assessing the safety of plant species.

作者简介

Sergei Skupnevskii

F.F. Erisman Federal Scientific Center of Hygiene; North Ossetian State University

编辑信件的主要联系方式.
Email: dreammas@yandex.ru
ORCID iD: 0000-0002-6233-5944
Доктор биол. наук, вед. науч. сотр. отдела токсикологии и гигиены окружающей среды ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора, 141014, Мытищи; вед. науч. сотр. ФГОУ ВО СОГУ им. К.Л. Хетагурова. 俄罗斯联邦

Valerii Rakitskii

F.F. Erisman Federal Scientific Center of Hygiene

Email: noemail@neicon.ru
ORCID iD: 0000-0002-6233-5944
MD, Ph.D., DSci., leading researcher of the Department of toxicology and environmental health of the F.F. Erisman Federal Scientific Center of Hygiene, Mytishchi, 141014, Russian Federation. 俄罗斯联邦

Tatina Synitskaya

F.F. Erisman Federal Scientific Center of Hygiene

Email: noemail@neicon.ru
ORCID iD: 0000-0002-3974-4977
俄罗斯联邦

Igor Nikolaev

North Ossetian State University

Email: noemail@neicon.ru
ORCID iD: 0000-0002-2379-7601
俄罗斯联邦

Victoriya Tsagaeva

Center of hygiene and epidemiology in the Republic of North Ossetia

Email: noemail@neicon.ru
俄罗斯联邦

参考

  1. WHO Health Risk Assessment Toolkit: Chemical hazards. International Program on Chemical Safety Harmonization Project Document. Geneva; 2010. Available at: http://www.who.int/ipcs/publications/methods/harmonization/toolkit.pdf
  2. Rakitskiy V.N., Sinitskaya T.A. The Combined Effect of Pesticides and Heavy Metals [Kombinirovannoe deystvie pestitsidov i tyazhelykh metallov]. Moscow: Shiko; 2012. (in Russian)
  3. Anyanwu B.O., Ezejiofor A.N., Igweze Z.N., Orisakwe O.E. Heavy metal mixture exposure and effects in developing nations: an update. Toxics. 2018; 6(4): 65. https://doi.org/10.3390/toxics6040065
  4. Jaishankar M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014; 7(2): 60–72. https://doi.org/10.2478/intox-2014-0009
  5. Chowdhury R., Ramond A., O’Keeffe L.M., Shahzad S., Kunutsor S.K., Muka T. et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2018; 362: k3310. https://doi.org/10.1136/bmj.k3310
  6. WHO. Fact sheet. The top 10 causes of death. Available at: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  7. Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. Heavy metal toxicity and the environment. Exp Suppl. 2012; 101: 133–64. https://doi.org/10.1007/978-3-7643-8340-4_6
  8. Kapahi M., Sachdeva S. Bioremediation options for heavy metal pollution. J Health Pollut. 2019; 9(24): 191–203. https://doi.org/10.5696/2156-9614-9.24.191203
  9. Maskall J., Whitehead K., Thornton I. Heavy metal migration in soils and rocks at historical smelting sites. Environ Geochem Health. 1995; 17(3): 127–38. https://doi.org/10.1007/BF00126081
  10. Olaniran A.O., Balgobind A., Pillay B. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci. 2013; 14(5): 10197–228. https://doi.org/10.3390/ijms140510197
  11. Kuzina L.B. The current state of studying the changes in the forms and bioavailability of copper and zinc in the soil-plant system: optimal design studies for monitoring on large sample arrays. Byulleten’ nauki i praktiki. 2018; 4(7): 120–52. (in Russian)
  12. Kuzina L.B. Changes of forms and biohability of copper and zinc on with longe application of fertilizers. Byulleten’ nauki i praktiki. 2018; 4(7): 92–119. (in Russian)
  13. Ovcharenko M.M., ed. Heavy Metals in the Soil-Plant-Fertilizer System [Tyazhelye metally v sisteme pochva-rastenie-udobrenie]. Moscow; 1997. (in Russian)
  14. Clemente R., Walker D.J., Roig A., Bernal M.P. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain). Biodegradation. 2003; 14(3): 199–205. https://doi.org/10.1023/a:1024288505979
  15. Fokina A.I., Domracheva L.I., Ol’kova A.S., Skugoreva S.G., Lyalina E.I., Berezin G.I., et al. Research the samples toxicity of urbanozems, polluted by heavy metals. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2016; 18(2): 544–50. (in Russian)
  16. Avtukhovich I.E., Postnikov D.A. The effect of EDTA on the behavior of metals in a substrate and their accumulation by plants. Agrokhimicheskiy vestnik. 2014; (1): 23–5. (in Russian)
  17. Bock R. A Handbook of Decomposition Methods in Analytical Chemistry. New York: John Wiley and Sons; 1979.
  18. Gigolaeva L.V., Butaev T.M., Merkulova N.A. Experience of Rospotrebnadzor Republic of North Ossetia-Alania to improve quality and environmental health within the companies lead-zinc production. Zdorov’e naseleniya i sreda obitaniya. 2012; (11): 44–5. (in Russian)
  19. Polovetskaya O.S., Platonov V.V., Khadartsev A.A., Subbotin V.A., Khrupachev A.G. The evaluation of ecological condition of different territories of Vladikavkaz city. Vestnik novykh meditsinskikh tekhnologiy. 2012; 19(4): 188–90. (in Russian)
  20. Revich B.A. «Hot Spots» of Chemical Pollution of the Environment and the Health of the Population of Russia [«Goryachie tochki» khimicheskogo zagryazneniya okruzhayushchey sredy i zdorov’e naseleniya Rossii]. Moscow: Akropol’; 2007. (in Russian)
  21. Vasil’eva T.N., Brudastov Yu.A. Polluted with metal of soils of Orenburg city: common parameters of interaction with metal phytoaccumulation and representatives of synanthropic flora. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2007; (12): 83–6. (in Russian)

补充文件

附件文件
动作
1. JATS XML

版权所有 © Skupnevskii S.V., Rakitskii V.N., Synitskaya T.A., Nikolaev I.A., Tsagaeva V.V., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.