PCR analysis of the presence of virulent genes E. coli isolates from external environmental in comparison with isolates from feces of healthy people and patients with inflammatory bowel diseases
- Authors: Pay G.V.1, Rakitina D.V.1, Pankova M.N.1, Fedez Z.E.1, Maniya T.R.1, Zagaynova A.V.1, Yudin S.M.1
-
Affiliations:
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
- Issue: Vol 101, No 5 (2022)
- Pages: 503-510
- Section: ENVIRONMENTAL HYGIENE
- Published: 07.06.2022
- URL: https://rjpbr.com/0016-9900/article/view/639250
- DOI: https://doi.org/10.47470/0016-9900-2022-101-5-503-510
- ID: 639250
Cite item
Full Text
Abstract
Introduction. Pathogenic Escherichia coli presents a real threat to human health. One of the ways of transmission of these isolates is via environmental water sources. Therefore, evaluation of pathogenic potential of E. coli population in water is of great interest.
Purpose of the study was to compare E. coli isolates from wells, sewers, water pools and surface waters with two control groups — “non-pathogenic” isolates from feces of healthy people and “potentially pathogenic” from feces of people with inflammatory bowel diseases (IBD).
Materials and methods. PCR-assay was used to detect potential virulence genes. 19 E. coli virulence genes were analyzed: 11 toxins, 5 adhesion and invasion proteins and 2 diarrhogenic serotypes. The PCR identification of carbapenemase genes and various E. coli pathotypes was performed with the commercial “Amplisense” kits according to the manufacturer’s instruction. The assay was performed on 47 E. coli isolates from water environmental sources (WES), 44 isolates from feces of “practically healthy” people, 43 isolates from feces from IBD patients.
Results. Isolates from WES were found to be similar to the group of isolates from healthy people. Only 2 types of virulence E. coli were detected in these groups – toxins CNF1 and 2 and invasin einv. IBD group of isolates demonstrated striking difference from the others. Only IBD isolates demonstrated such genes as adhesion regulator aggR, invasive antigen ipaH, hemolysin hly and antibiotic resistance gene NDM. CNF1 gene was found in IBD group significantly more often, than in two other groups. The only pathotype detected in the samples analyzed, enteroaggregative, was limited to the IBD group, too.
Limitations. To compare the pathogenetic potential of E. coli from human feces and environment, 134 isolates were tested for 19 pathogenic genetic determinants, which is a representative selection. Within the analysis, we were unable to compare bacterial pathogenic potential from various environmental sources (surface waters and sewage, treatment facilities etc.) due to the uneven representation of these objects in the selection. It will be the subject of our future studies.
Conclusion. Pathogenic potential of E. coli isolates from environmental water sources was close to that from healthy human feces.
Contribution:
Pay G.V. — research concept and design, experimental work, statistical processing, text writing, editing.
Rakitina D.V. — performing experimental work, writing a text, editing.
Pankova M.N., Fedez Z.E. — collection and processing of material, isolation of isolates and sowing of crops.
Maniya T.R., Zagainova A.V., Yudin S.M. — editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The research was carried out within the framework of the research work “Development of technologies for cryopreservation and archiving of biological samples of human microecological resources (code“Cryobank”)” No. АААА-А18-118020590091-2, “Development of unified methods, including sampling, for the determination of microbiological and parasitological contamination of wastewater” (code “Wastewater”) No. АААА-А21-121011190012-3.
Received: March 1, 2022 / Accepted: April 21, 2022 / Published: May 31, 2022
About the authors
Galina V. Pay
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
Author for correspondence.
Email: noemail@neicon.ru
ORCID iD: 0000-0001-7086-0899
Russian Federation
Darya V. Rakitina
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
Email: noemail@neicon.ru
ORCID iD: 0000-0003-3554-7690
Russian Federation
Marina N. Pankova
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
Email: noemail@neicon.ru
ORCID iD: 0000-0002-9133-3665
Russian Federation
Zlata E. Fedez
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
Email: noemail@neicon.ru
Russian Federation
Tamari R. Maniya
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
Email: tmaniya@cspmz.ru
ORCID iD: 0000-0002-6295-661X
Researcher of Microbiology and Parasitology laboratory in the Centre for Strategic Planning of FMBA of Russia, Moscow, 119121, Russia.
e-mail: TManiya@cspmz.ru
Russian FederationAngelika V. Zagaynova
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
Email: noemail@neicon.ru
ORCID iD: 0000-0003-4772-9686
Russian Federation
Sergey M. Yudin
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
Email: noemail@neicon.ru
ORCID iD: 0000-0002-7942-8004
Russian Federation
References
- Kaper J.B., Nataro J.P., Mobley H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004; 2(2): 123-40. https://doi.org/10.1038/nrmicro818
- Mull B., Hill V.R. Recovery and detection of Escherichia coli O157:H7 in surface water, using ultrafiltration and real-time PCR. Appl. Environ. Microbiol. 2009; 75(11): 3593-7. https://doi.org/10.1128/AEM.02750-08
- Chern E.C., Tsai Y.L., Olson B.H. Occurrence of genes associated with enterotoxigenic and enterohemorrhagic Escherichia coli in agricultural waste lagoons. Appl. Environ. Microbiol. 2004; 70(1): 356-62. https://doi.org/10.1128/aem.70.1.356-362.2004
- Hamilton M.J., Hadi A.Z., Griffith J.F., Ishii S., Sadowsky M.J. Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon Bay, CA. Water Res. 2010; 44(18): 5463-73. https://doi.org/10.1016/j.watres.2010.06.058
- Lauber C.L., Glatzer L., Sinsabaugh R.L. Prevalence of pathogenic Escherichia coli in recreational waters. J. Great Lakes Res. 2003; 29(2): 301-6. https://doi.org/10.1016/S0380-1330(03)70435-3
- Sidhu J.P., Ahmed W., Hodgers L., Toze S. Occurrence of virulence genes associated with Diarrheagenic pathotypes in Escherichia coli isolates from surface water. Appl. Environ. Microbiol. 2013; 79(1): 328-35. https://doi.org/10.1128/AEM.02888-12
- Reynolds C., Checkley S., Chui L., Otto S., Neumann N.F. Evaluating the risks associated with Shiga-toxin-producing Escherichia coli (STEC) in private well waters in Canada. Can. J. Microbiol. 2020; 66(5): 337-50. https://doi.org/10.1139/cjm-2019-0329
- Fagerström A., Mölling P., Khan F.A., Sundqvist M., Jass J., Söderquist B.Comparative distribution of extended-spectrum beta-lactamase-producing Escherichia coli from urine infections and environmental waters. PLoS One. 2019; 14(11): e0224861. https://doi.org/10.1371/journal.pone.0224861
- Bleichenbacher S., Stevens M.J.A., Zurfluh K., Perreten V., Endimiani A., Stephan R., et al. Environmental dissemination of carbapenemase-producing Enterobacteriaceae in rivers in Switzerland. Environ. Pollut. 2020; 265(Pt. B): 115081. https://doi.org/10.1016/j.envpol.2020.115081
- Jang J., Suh Y.S., Di D.Y.W., Unno T., Sadowsky M.J., Hur H.G. Pathogenic Escherichia coli strains producing extended-spectrum β-lactamases in the Yeongsan River basin of South Korea. Environ. Sci. Technol. 2013; 47(2): 1128-36. https://doi.org/10.1021/es303577u
- Diab M., Hamze M., Bonnet R., Saras E., Madec J.Y., Haenni M. Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae in water sources in Lebanon. Vet. Microbiol. 2018; 217: 97-103. https://doi.org/10.1016/j.vetmic.2018.03.007
- Montero L., Irazabal J., Cardenas P., Graham J.P., Trueba G. Extended-spectrum beta-lactamase producing-Escherichia coli isolated from irrigation waters and produce in Ecuador. Front. Microbiol. 2021; 12: 709418. https://doi.org/10.3389/fmicb.2021.709418
- Scotta C., Juan C., Cabot G., Oliver A., Lalucat J., Bennasar A., et al. Environmental microbiota represents a natural reservoir for dissemination of clinically relevant metallo-β-lactamases. Antimicrob. Agents Chemother. 2011; 55(11): 5376-9. https://doi.org/10.1128/aac.00716-11
- Walsh T.R., Weeks J., Livermore D.M., Toleman M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis. 2011; 11(5): 355-62. https://doi.org/10.1016/s1473-3099(11)70059-7
- Baquero F., Martınez J.L., Canton R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008; 19(3): 260-5. https://doi.org/10.1016/j.copbio.2008.05.006
- Winfield M.D., Groisman E.A. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 2003; 69(7): 3687-94.
- Ishii S., Sadowsky M.J. Escherichia coli in the environment: implications for water quality and human health. Microbes Environ. 2008; 23(2): 101-8. https://doi.org/10.1264/jsme2.23.101
- Bagley S.T. Habitat association of Klebsiella species. Infect. Control. 1985; 6(2): 52-8. https://doi.org/10.1017/s0195941700062603
- Wellington E.M.H., Boxall A.B.A., Cross P., Feil E.J., Gaze W.H., Hawkey P.M., et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis. 2013; 13(2): 155-65. https://doi.org/10.1016/s1473-3099(12)70317-1
- Ramirez M.S., Traglia G.M., Lin D.L., Tran T., Tolmasky M.E. Plasmid-mediated antibiotic resistance and virulence in gram-negatives: the Klebsiella pneumoniae paradigm. Microbiol. Spectr. 2014; 2(5). https://doi.org/10.1128/microbiolspec.PLAS-0016-2013
- Pass M.A., Odedra R., Batt R.M. Multiplex PCRs for identification of Escherichia coli virulence genes. J. Clin. Microbiol. 2000; 38(5): 2001-4. https://doi.org/10.1128/JCM.38.5.2001-2004.2000
- Paton A.W., Paton J.C. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, Enterohemorrhagic E. coli hlyA, rfbO111, and rfbO15. J. Clin. Microbiol. 1998; 36(2): 598-602. https://doi.org/10.1128/JCM.36.2.598-602.1998
- Toma C., Lu Y., Higa N., Nakasone N., Chinen I., Baschkier A., et al. Multiplex PCR assay for identification of human diarrheagenic Escherichia coli. J. Clin. Microbiol. 2003; 41(6): 2669-71. https://doi.org/10.1128/JCM.41.6.2669-2671.2003
- Compain F., Babosan A., Brisse S., Genel N., Audo J., Ailloud F., et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J. Clin. Microbiol. 2014; 52(12): 4377-80. https://doi.org/10.1128/JCM.02316-14
- Clermont O., Bonacorsi S., Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000; 66(10): 4555-8. https://doi.org/10.1128/AEM.66.10.4555-4558.2000
- Analysis of arbitrary conjugacy tables using the chi-square criterion. Online Calculator. Available at: https://medstatistic.ru/calculators/calchit.html (in Russian)
- Hofman P., Le Negrate G., Mograbi B., Hofman V., Brest P., Alliana-Schmid A., et al. Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J. Leukoc. Biol. 2000; 68(4): 522-8.
- Gall-Mas L., Fabbri A., Namini M.R.J., Givskov M., Fiorentini C., Krejsgaard T. The bacterial toxin CNF1 induces activation and maturation of human monocyte-derived dendritic cells.Int. J. Mol. Sci. 2018; 19(5): 1408. https://doi.org/10.3390/ijms19051408
- Desvaux M., Dalmasso G., Beyrouthy R., Barnich N., Delmas J., Bonnet R. Pathogenicity factors of genomic islands in intestinal and extraintestinal Escherichia coli. Front. Microbiol. 2020; 11: 2065. https://doi.org/10.3389/fmicb.2020.02065
- Ong C.L., Beatson S.A., Totsika M., Forestier C., McEwan A.G., Schembri M.A. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol. 2010; 10: 183. https://doi.org/10.1186/1471-2180-10-183
- Yeh K.M., Lin J.C., Yin F.Y., Fung C.P., Hung H.C., Siu L.K., et al. Revisiting the importance of virulence determinant magA and its surrounding genes in Klebsiella pneumoniae causing pyogenic liver abscesses: exact role in serotype K1 capsule formation. J. Infect. Dis. 2010; 201(8): 1259-67. https://doi.org/10.1086/606010
Supplementary files
