PCR analysis of the presence of virulent genes E. coli isolates from external environmental in comparison with isolates from feces of healthy people and patients with inflammatory bowel diseases

Cover Page

Cite item

Full Text

Abstract

Introduction. Pathogenic Escherichia coli presents a real threat to human health. One of the ways of transmission of these isolates is via environmental water sources. Therefore, evaluation of pathogenic potential of E. coli population in water is of great interest. 

Purpose of the study was to compare E. coli isolates from wells, sewers, water pools and surface waters with two control groups — “non-pathogenic” isolates from feces of healthy people and “potentially pathogenic” from feces of people with inflammatory bowel diseases (IBD). 

Materials and methods. PCR-assay was used to detect potential virulence genes. 19 E. coli virulence genes were analyzed: 11 toxins, 5 adhesion and invasion proteins and 2 diarrhogenic serotypes. The PCR identification of carbapenemase genes and various E. coli pathotypes was performed with the commercial “Amplisense” kits according to the manufacturer’s instruction. The assay was performed on 47 E. coli isolates from water environmental sources (WES), 44 isolates from feces of “practically healthy” people, 43 isolates from feces from IBD patients. 

Results. Isolates from WES were found to be similar to the group of isolates from healthy people. Only 2 types of virulence E. coli were detected in these groups – toxins CNF1 and 2 and invasin einv. IBD group of isolates demonstrated striking difference from the others. Only IBD isolates demonstrated such genes as adhesion regulator aggR, invasive antigen ipaH, hemolysin hly and antibiotic resistance gene NDM. CNF1 gene was found in IBD group significantly more often, than in two other groups. The only pathotype detected in the samples analyzed, enteroaggregative, was limited to the IBD group, too. 

Limitations. To compare the pathogenetic potential of E. coli from human feces and environment, 134 isolates were tested for 19 pathogenic genetic determinants, which is a representative selection. Within the analysis, we were unable to compare bacterial pathogenic potential from various environmental sources (surface waters and sewage, treatment facilities etc.) due to the uneven representation of these objects in the selection. It will be the subject of our future studies.

Conclusion. Pathogenic potential of E. coli isolates from environmental water sources was close to that from healthy human feces.

Contribution:
Pay G.V. — research concept and design, experimental work, statistical processing, text writing, editing.
Rakitina D.V. — performing experimental work, writing a text, editing.
Pankova M.N., Fedez Z.E. — collection and processing of material, isolation of isolates and sowing of crops.
Maniya T.R., Zagainova A.V., Yudin S.M. — editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The research was carried out within the framework of the research work “Development of technologies for cryopreservation and archiving of biological samples of human microecological resources (code“Cryobank”)” No. АААА-А18-118020590091-2, “Development of unified methods, including sampling, for the determination of microbiological and parasitological contamination of wastewater” (code “Wastewater”) No.  АААА-А21-121011190012-3.

Received: March 1, 2022 / Accepted: April 21, 2022 / Published: May 31, 2022

About the authors

Galina V. Pay

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Author for correspondence.
Email: noemail@neicon.ru
ORCID iD: 0000-0001-7086-0899
Russian Federation

Darya V. Rakitina

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0003-3554-7690
Russian Federation

Marina N. Pankova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-9133-3665
Russian Federation

Zlata E. Fedez

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
Russian Federation

Tamari R. Maniya

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: tmaniya@cspmz.ru
ORCID iD: 0000-0002-6295-661X

Researcher of Microbiology and Parasitology laboratory in the Centre for Strategic Planning of FMBA of Russia, Moscow, 119121, Russia.

e-mail: TManiya@cspmz.ru 

Russian Federation

Angelika V. Zagaynova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0003-4772-9686
Russian Federation

Sergey M. Yudin

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-7942-8004
Russian Federation

References

  1. Kaper J.B., Nataro J.P., Mobley H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004; 2(2): 123-40. https://doi.org/10.1038/nrmicro818
  2. Mull B., Hill V.R. Recovery and detection of Escherichia coli O157:H7 in surface water, using ultrafiltration and real-time PCR. Appl. Environ. Microbiol. 2009; 75(11): 3593-7. https://doi.org/10.1128/AEM.02750-08
  3. Chern E.C., Tsai Y.L., Olson B.H. Occurrence of genes associated with enterotoxigenic and enterohemorrhagic Escherichia coli in agricultural waste lagoons. Appl. Environ. Microbiol. 2004; 70(1): 356-62. https://doi.org/10.1128/aem.70.1.356-362.2004
  4. Hamilton M.J., Hadi A.Z., Griffith J.F., Ishii S., Sadowsky M.J. Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon Bay, CA. Water Res. 2010; 44(18): 5463-73. https://doi.org/10.1016/j.watres.2010.06.058
  5. Lauber C.L., Glatzer L., Sinsabaugh R.L. Prevalence of pathogenic Escherichia coli in recreational waters. J. Great Lakes Res. 2003; 29(2): 301-6. https://doi.org/10.1016/S0380-1330(03)70435-3
  6. Sidhu J.P., Ahmed W., Hodgers L., Toze S. Occurrence of virulence genes associated with Diarrheagenic pathotypes in Escherichia coli isolates from surface water. Appl. Environ. Microbiol. 2013; 79(1): 328-35. https://doi.org/10.1128/AEM.02888-12
  7. Reynolds C., Checkley S., Chui L., Otto S., Neumann N.F. Evaluating the risks associated with Shiga-toxin-producing Escherichia coli (STEC) in private well waters in Canada. Can. J. Microbiol. 2020; 66(5): 337-50. https://doi.org/10.1139/cjm-2019-0329
  8. Fagerström A., Mölling P., Khan F.A., Sundqvist M., Jass J., Söderquist B.Comparative distribution of extended-spectrum beta-lactamase-producing Escherichia coli from urine infections and environmental waters. PLoS One. 2019; 14(11): e0224861. https://doi.org/10.1371/journal.pone.0224861
  9. Bleichenbacher S., Stevens M.J.A., Zurfluh K., Perreten V., Endimiani A., Stephan R., et al. Environmental dissemination of carbapenemase-producing Enterobacteriaceae in rivers in Switzerland. Environ. Pollut. 2020; 265(Pt. B): 115081. https://doi.org/10.1016/j.envpol.2020.115081
  10. Jang J., Suh Y.S., Di D.Y.W., Unno T., Sadowsky M.J., Hur H.G. Pathogenic Escherichia coli strains producing extended-spectrum β-lactamases in the Yeongsan River basin of South Korea. Environ. Sci. Technol. 2013; 47(2): 1128-36. https://doi.org/10.1021/es303577u
  11. Diab M., Hamze M., Bonnet R., Saras E., Madec J.Y., Haenni M. Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae in water sources in Lebanon. Vet. Microbiol. 2018; 217: 97-103. https://doi.org/10.1016/j.vetmic.2018.03.007
  12. Montero L., Irazabal J., Cardenas P., Graham J.P., Trueba G. Extended-spectrum beta-lactamase producing-Escherichia coli isolated from irrigation waters and produce in Ecuador. Front. Microbiol. 2021; 12: 709418. https://doi.org/10.3389/fmicb.2021.709418
  13. Scotta C., Juan C., Cabot G., Oliver A., Lalucat J., Bennasar A., et al. Environmental microbiota represents a natural reservoir for dissemination of clinically relevant metallo-β-lactamases. Antimicrob. Agents Chemother. 2011; 55(11): 5376-9. https://doi.org/10.1128/aac.00716-11
  14. Walsh T.R., Weeks J., Livermore D.M., Toleman M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis. 2011; 11(5): 355-62. https://doi.org/10.1016/s1473-3099(11)70059-7
  15. Baquero F., Martınez J.L., Canton R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008; 19(3): 260-5. https://doi.org/10.1016/j.copbio.2008.05.006
  16. Winfield M.D., Groisman E.A. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 2003; 69(7): 3687-94.
  17. Ishii S., Sadowsky M.J. Escherichia coli in the environment: implications for water quality and human health. Microbes Environ. 2008; 23(2): 101-8. https://doi.org/10.1264/jsme2.23.101
  18. Bagley S.T. Habitat association of Klebsiella species. Infect. Control. 1985; 6(2): 52-8. https://doi.org/10.1017/s0195941700062603
  19. Wellington E.M.H., Boxall A.B.A., Cross P., Feil E.J., Gaze W.H., Hawkey P.M., et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis. 2013; 13(2): 155-65. https://doi.org/10.1016/s1473-3099(12)70317-1
  20. Ramirez M.S., Traglia G.M., Lin D.L., Tran T., Tolmasky M.E. Plasmid-mediated antibiotic resistance and virulence in gram-negatives: the Klebsiella pneumoniae paradigm. Microbiol. Spectr. 2014; 2(5). https://doi.org/10.1128/microbiolspec.PLAS-0016-2013
  21. Pass M.A., Odedra R., Batt R.M. Multiplex PCRs for identification of Escherichia coli virulence genes. J. Clin. Microbiol. 2000; 38(5): 2001-4. https://doi.org/10.1128/JCM.38.5.2001-2004.2000
  22. Paton A.W., Paton J.C. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, Enterohemorrhagic E. coli hlyA, rfbO111, and rfbO15. J. Clin. Microbiol. 1998; 36(2): 598-602. https://doi.org/10.1128/JCM.36.2.598-602.1998
  23. Toma C., Lu Y., Higa N., Nakasone N., Chinen I., Baschkier A., et al. Multiplex PCR assay for identification of human diarrheagenic Escherichia coli. J. Clin. Microbiol. 2003; 41(6): 2669-71. https://doi.org/10.1128/JCM.41.6.2669-2671.2003
  24. Compain F., Babosan A., Brisse S., Genel N., Audo J., Ailloud F., et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J. Clin. Microbiol. 2014; 52(12): 4377-80. https://doi.org/10.1128/JCM.02316-14
  25. Clermont O., Bonacorsi S., Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000; 66(10): 4555-8. https://doi.org/10.1128/AEM.66.10.4555-4558.2000
  26. Analysis of arbitrary conjugacy tables using the chi-square criterion. Online Calculator. Available at: https://medstatistic.ru/calculators/calchit.html (in Russian)
  27. Hofman P., Le Negrate G., Mograbi B., Hofman V., Brest P., Alliana-Schmid A., et al. Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J. Leukoc. Biol. 2000; 68(4): 522-8.
  28. Gall-Mas L., Fabbri A., Namini M.R.J., Givskov M., Fiorentini C., Krejsgaard T. The bacterial toxin CNF1 induces activation and maturation of human monocyte-derived dendritic cells.Int. J. Mol. Sci. 2018; 19(5): 1408. https://doi.org/10.3390/ijms19051408
  29. Desvaux M., Dalmasso G., Beyrouthy R., Barnich N., Delmas J., Bonnet R. Pathogenicity factors of genomic islands in intestinal and extraintestinal Escherichia coli. Front. Microbiol. 2020; 11: 2065. https://doi.org/10.3389/fmicb.2020.02065
  30. Ong C.L., Beatson S.A., Totsika M., Forestier C., McEwan A.G., Schembri M.A. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol. 2010; 10: 183. https://doi.org/10.1186/1471-2180-10-183
  31. Yeh K.M., Lin J.C., Yin F.Y., Fung C.P., Hung H.C., Siu L.K., et al. Revisiting the importance of virulence determinant magA and its surrounding genes in Klebsiella pneumoniae causing pyogenic liver abscesses: exact role in serotype K1 capsule formation. J. Infect. Dis. 2010; 201(8): 1259-67. https://doi.org/10.1086/606010

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Pay G.V., Rakitina D.V., Pankova M.N., Fedez Z.E., Maniya T.R., Zagaynova A.V., Yudin S.M.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.