The role of vitamin D, zinc and selenium in the development of noncommunicable diseases (literature review)
- Authors: Zaikina I.V.1, Komleva N.E.1,2, Mikerov A.N.1,2
-
Affiliations:
- Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
- V.I. Razumovsky Saratov State Medical University
- Issue: Vol 100, No 7 (2021)
- Pages: 730-735
- Section: FOOD HYGIENE
- Published: 23.07.2021
- URL: https://rjpbr.com/0016-9900/article/view/639243
- DOI: https://doi.org/10.47470/0016-9900-2021-100-7-730-735
- ID: 639243
Cite item
Full Text
Abstract
A healthy diet is a factor in maintaining and improving health, helping to reduce the risk of developing alimentary-dependent diseases. The article presents the causes of malnutrition, data on the actual deficiency of vitamins and minerals in the population of the Russian Federation. Insufficient content of essential micronutrients in the diet is accompanied by a decrease in the body’s adaptive capabilities, contributing to an increase in the risk of developing non-infectious diseases. The article provides information on the role of chronic low-level inflammation and oxidative stress in the development of noncommunicable diseases. Significant contributors are vitamin D, zinc and selenium, and their deficiencies are widespread. Scientific evidence supports the role of vitamin D, zinc, selenium in the development of non-infectious diseases. The review discusses the role of vitamin D in the development of cardiovascular disorders, discusses the dependence on iron and zinc, which has clinical diagnostic and therapeutic value in anaemia and associated pathological conditions. In addition, the article discusses selenium and zinc deficiencies with the risk of the coronary syndrome, stroke, cardiovascular disease and mortality from them. Despite conflicting data on the effectiveness of oral micronutrient supplementation to prevent and treat chronic noncommunicable diseases, healthcare providers should be informed about the consequences of micronutrient deficiencies and identify micronutrient deficiencies correct them. This is important in treatment and prevention activities for people at risk, especially in endemic disadvantaged regions. The literature search was carried out in the databases PubMed, CyberLeninka, e-library.
Contribution:
Zaikina I.V. — writing a text;
Komleva N.E. — the concept and design of the study;
Mikerov A.N. — editing.
All authors are responsible for the integrity of parts of the manuscript and approval of the manuscript final version.
Acknowledgement. The study had no sponsorship
Conflict of interest. The authors declare no conflict of interest.
About the authors
Inna V. Zaikina
Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Author for correspondence.
Email: innaza2@mail.ru
ORCID iD: 0000-0003-4234-7056
MD, PhD, senior researcher of the Department of medical-preventive and innovative technologies Federal Research Center of Medical-Preventive Technologies for Managing Public Health Risks, Saratov Hygiene Medical Research Center, Saratov, 410022, Russian Federation.
e-mail: Innaza2@mail.ru
Russian FederationNataliya E. Komleva
Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; V.I. Razumovsky Saratov State Medical University
Email: noemail@neicon.ru
ORCID iD: 0000-0001-5360-712X
Russian Federation
Anatoly N. Mikerov
Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; V.I. Razumovsky Saratov State Medical University
Email: noemail@neicon.ru
ORCID iD: 0000-0002-0670-7918
Russian Federation
References
- Gerasimenko N.F., Poznyakovskiy V.M., Chelnakova N.G. Methodological aspects of adequate safe nutrition: meaning for health promotion and maintenance of working capacity. Chelovek. Sport. Meditsina. 2017; 17(1): 79–86. https://doi.org/10.14529/hsm170108 (in Russian)
- Maslennikova G.Ya., Boytsov S.A., Oganov R.G., Aksel’rod S.V., Esin P.E. Non-communicable disease as a global health problem, the role of the WHO in its solution. Profilakticheskaya meditsina. 2015; 18(1): 91–3. https://doi.org/10.17116/profmed20151819 (in Russian)
- Magee P.J., McCann M.T. Micronutrient deficiencies: current issues. Proc. Nutr Soc. 2019; 78(2): 147–9. https://doi.org/10.1017/S0029665118002677
- Ames B.N. Prolonging healthy aging: Longevity vitamins and proteins. Proc. Natl Acad. Sci. USA. 2018; 115(43): 10836–44. https://doi.org/10.1073/pnas.1809045115
- Karamnova N.S., Shal’nova S.A., Deev A.D., Tarasov V.I., Balanova Yu.A., Imaeva A.E., et al. Nutrition characteristics of adult inhabitants by ESSE-RF study. Kardiovaskulyarnaya terapiya i profilaktika. 2018; 17(4): 61–6. https://doi.org/10.15829/1728-8800-2018-4-61-66 (in Russian)
- Kodentsova V.M., Vrzhesinskaya O.A., Risnik D.V., Nikityuk D.B., Tutel’yan V.A. Micronutrient status of population of the Russian Federation and possibility of its correction. State of the problem. Voprosy pitaniya. 2017; 86(4): 113–24. (in Russian)
- Sen’kevich O.A., Koval’skiy Yu.G., Golubkina N.A. Monitoring of selenium content in some food of residents of the Khabarovsk. Voprosy pitaniya. 2018; 87(6): 89–94. https://doi.org/10.24411/0042-8833-2018-10070 (in Russian)
- Frolova O.A., Tafeeva E.A., Bocharov E.P. Regional features of the content of zinc in the soil, products of plant and animal origin (for the example of the Republic of Tatarstan). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2017; 96(3): 226–9. https://doi.org/10.18821/0016-9900-2017-96-3-226-229 (in Russian)
- Kodentsova V.M., Risnik D.V., Nikityuk D.B., Tutel’yan V.A. Multivitamin-mineral supplementation in medical nutrition. Consilium Medicum. 2017; 19(12): 76–83. https://doi.org/10.26442/2075-1753_19.12.76-83 (in Russian)
- Tutel’yan V.A., Pogozheva A.V., Egorenkova N.P., Levin L.G., Aristarkhova T.V., Denisova N.N., et al. Diagnostics and alimentary prevention of the non-infectious diseases. Yakutskiy meditsinskiy zhurnal. 2015; (3): 74–6. (in Russian)
- Spirichev V.B., Trikhina V.V., Poznyakovskiy V.M. Fortification of foods with micronutrients – reliable way to optimize of their consumption. Problemy endokrinologii. 2018; 64(1): 21–37. https://doi.org/10.14341/probl201864121-37 (in Russian)
- Troshina E.A., Platonova N.M., Panfilova E.A., Panfilov K.O. The analytical review of monitoring of the basic epidemiological characteristics of iodine deficiency disorders among the population of the Russian Federation for the period 2009—2015. Problemy yendokrinologii [Problems of Endocrinology]. 2018; 64(1): 21–37. (in Russian) https://doi.org/10.14341/probl9308
- Skal’nyy A.V., Berezkina E.S., Demidov V.A., Grabeklis A.R., Skal’naya M.G. Ecological and physiological assessment of the elemental status in the adult population of the Republic of Bashkortostan. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2016; 95(6): 533–8. https:/doi.org/10.18821/0016-9900-2016-95-6-533-538 (in Russian)
- Lisetskaya L.G., Efimova N.V. Regional indices of trace element levels in hair in children of the population of the Irkutsk region. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2016; 95(3): 266–9. https://doi.org/10.18821/0016-9900-2016-95-3-266-269 (in Russian)
- Golubkina N.A., Sindireva A.V., Zaytsev V.F. Interigional variability of the human selenium status. Yug Rossii: ekologiya, razvitie. 2017; 12(1): 107–27. https://doi.org/10.18470/1992-1098-2017-1-107-127 (in Russian)
- Svechnikova A.A., Golubkina N.A., Melyakina E.I. The human selenium status of Astrakhan region. Voprosy pitaniya. 2010; 79(2): 78–82. (in Russian)
- Sindireva A.V., Golubkina N.A. Evaluation of selenium status of the territory of Omsk region. Omskiy nauchnyy vestnik. 2011; (1): 192–6. (in Russian)
- Legon’kova T.I., Shtykova O.N., Voytenkova O.V., Stepina T.G. Clinical significance of zinc: results of the 14-year prospective study of children. Meditsinskiy sovet. 2018; (11): 147–53. https://doi.org/10.21518/2079-701X-2018-11-147-153 (in Russian)
- Spirichev V.B. To the substantiation of the joint use of vitamin D and the rest of the 12 vitamins necessary for the creation and realization of the vital functions of its hormone-active form (the vitamin D + 12 vitamins approach). J. Nutr. Ther. 2013; 2(1):1–7.
- King J.C., Brown K.H., Gibson R.S., Krebs N.F., Lowe N.M., Siekmann J.H., et al. Biomarkers of nutrition for development (BOND)-zinc review. J Nutr. 2015; 146(4): 858S–85S. https://doi.org/10.3945/jn.115.220079
- Skal’nyy A.V. Reference values of chemical elements concentration in hair, obtained by means of ICP-AES method in ANO Centre for biotic medicine. Mikroelementy v meditsine. 2003; 4(1): 55–6. (in Russian)
- Gmoshinskiy I.V., Munkhuu B., Mazo V.K. Trace elements in human nutrition: biological indices of zinc insufficiency. Voprosy pitaniya. 2006; 75(6): 4–11. (in Russian)
- Verstuyf A., Carmeliet G., Bouillon R., Mathieu C. Vitamin D: a pleiotropic hormone. Kidney Int. 2010; 78(2): 140–5. https://doi.org/10.1038/ki.2010.17
- Tsuprykov O., Chen X., Hocher C.F., Skoblo R., Lianghong Yin., Hocher B. Why should we measure free 25(OH) vitamin D? J. Steroid Biochem. Mol. Biol. 2018; 180: 87–104. https://doi.org10.1016/j.jsbmb.2017.11.014
- Bouillon R. Vitamin D and cardiovascular disorders. Osteoporos. Int. 2019; 30(11): 2167–81. https://doi.org/10.1007/s00198-019-05098-0
- Heravi A.S., Michos E.D. Vitamin D and calcium supplements: helpful, harmful, or neutral for cardiovascular risk? Methodist Debakey Cardiovasc. J. 2019; 15(3): 207–13. https://doi.org/10.14797/mdcj-15-3-207
- Li Y.C. Discovery of vitamin D hormone as a negative regulator of the renin-angiotensin system. Clin. Chem. 2014; 60(3): 561–2. https://doi.org/10.1373/clinchem.2013.216150
- Chen N., Wan Z., Han S.F., Li B.Y., Zhang Z.L., Qin L.Q. Effect of vitamin D supplementation on the level of circulating high-sensitivity C-reactive protein: a meta-analysis of randomized controlled trials. Nutrients. 2014; 6(6): 2206–16. https://doi.org/10.3390/nu6062206
- Verdoia M., Schaffer A., Sartori C., Barbieri L., Cassetti E., Marino P., et al. Vitamin D deficiency is independently associated with the extent of coronary artery disease. Eur. J. Clin. Invest. 2014; 44(7): 634–42. https://doi.org/10.1111/eci.12281
- Miettinen M.E., Kinnunen L, Leiviskä J. [et al.] Association of serum 25-hydroxyvitamin D with lifestyle factors and metabolic and cardiovascular disease markers: population-based cross-sectional study (FIN-D2D). PLoS One. 2014; 9(7): e100235. https://doi.org/10.1371/journal.pone.0100235
- Lupton J.R., Faridi K.F., Martin S.S., Sharma S., Kulkarni K., Jones S.R., et al. Deficient serum 25-hydroxyvitamin D is associated with an atherogenic lipid profile: The Very Large Database of Lipids (VLDL-3) study. J. Clin. Lipidol. 2016; 10(1): 72–81. https://doi.org/10.1016/j.jacl.2015.09.006
- Liu H., Wang J., Xu Z. Prognostic utility of serum 25-hydroxyvitamin D in patients with stroke: a meta-analysis. J. Neurol. 2020; 267(11): 3177–86. https://doi.org/10.1007/s00415-019-09599-0
- Kim C., Lee S.H., Lim J.S., Kim Y., Jang M., Oh M., et al. Impact of 25-hydroxyvitamin D on the prognosis of acute ischemic stroke: machine learning approach. Front. Neurol. 2020; 11: 37. https://doi.org/ 10.3389/fneur.2020.00037
- Lips P., Eekhoff M., VanSchoor N., Oosterwerff M., Jongh R., Krul-Poel Y., et al. Vitamin D and type 2 diabetes. J. Steroid Biochem. Mol. Biol. 2017; 173: 280–5. https://doi.org/10.1016/j.jsbmb.2016.11.021
- Pilz S., Kienreich K., Rutters F., de Jongh R., van Ballegooijen A.J., Grübler M., et al. Role of vitamin D in the development of insulin resistance and type 2 diabetes. Curr. Diab. Rep. 2013; 13(2): 261–70. https://doi.org/10.1007/s11892-012-0358-4
- Chen P., Hu P., Xie D., Qin Y., Wang F., Wang H. Meta-analysis of vitamin D, calcium and the prevention of breast cancer. Breast Cancer Res. Treat. 2010; 121(2): 469–77. https://doi.org/10.1007/s10549-009-0593-9
- Dou R., Ng K., Giovannucci E.L., Manson J.E., Qian Z.R., Ogino S. Vitamin D and colorectal cancer: molecular, epidemiological and clinical evidence. Br. J. Nutr. 2016; 115(9): 1643–60. https://doi.org/10.1017/S0007114516000696
- Manson J.E., Cook N.R., Lee I.M., Christen W., Bassuk S.S., Mora S., et al. VITAL Research Group. Vitamin D supplements and prevention of cancer and cardiovascular disease. N. Engl. J. Med. 2019; 380(1): 33–44. https://doi.org/10.1056/NEJMoa1809944
- Oberlis D., Skal’nyy A.V., Skal’naya M.G., Nikonorov A.A., Nikonorova E.A. Pathophysiology of microelementosis message 2. Zinc. Patogenez. 2015; 13(4): 9–17. (in Russian)
- Choi S., Liu X., Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol. 2018; 39(7): 1120–32. https://doi.org/10.1038/aps.2018.25
- Eshak E.S., Iso H., Yamagishi K., Maruyama K., Umesawa M., Tamakoshi A. Associations between copper and zinc intakes from diet and mortality from cardiovascular disease in a large population-based prospective cohort study. J. Nutr. Biochem. 2018; 56: 126–32. https://doi.org/10.1016/j.jnutbio.2018.02.008
- Zhang J., Cao J., Zhang Y., Li H., Zhang H., Huo Y., et al. Baseline plasma zinc and risk of first stroke in hypertensive patients: a nested case-control study. Stroke. 2019; 50(11): 3255–8. https://doi.org/10.1161/STROKEAHA.119.027003
- Liu B., Cai Z.Q., Zhou Y.M. Deficient zinc levels and myocardial infarction: association between deficient zinc levels and myocardial infarction: a meta-analysis. Biol. Trace Elem. Res. 2015; 165(1): 41–50. https://doi.org/10.1007/s12011-015-0244-4
- Pompano L.M., Boy E. Effects of dose and duration of zinc interventions on risk factors for type 2 diabetes and cardiovascular disease: a systematic review and meta-analysis. Adv. Nutr. 2021; 12(1): 141–60. https://doi.org/10.1093/advances/nmaa087
- Ranasinghe P., Pigera S., Galappatthy P., Katulanda P., Constantine G.R. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. Daru. 2015; 23(1): 44. https://doi.org/10.1186/s40199-015-0127-4
- Shevtsova V.I., Zuykova A.A., Kotova Yu.A., Pashkov A.N. Level of the zinc in serum of blood of persons from risk groups as the component of early diagnosis of the chronic obstructive lung disease. Sovremennye problemy nauki i obrazovaniya. 2017; (2). Available at: https://www.science-education.ru/ru/article/view?id=26329
- Zhao L., Oliver E., Maratou K., Atanur S.S., Duubois O.D., Cotroneo E., et al. The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia. Nature. 2015; 524(7565): 356–60. https://doi.org/10.1038/nature14620
- Kondaiah P., Yaduvanshi P.S., Sharp P.A., Pullakhandam R. Iron and zinc homeostasis and interactions: does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients. 2019; 11(8): 1885. https://doi.org/10.3390/nu11081885
- Liu Z., Sun R., Li J., Cheng W., Li L. Relations of anemia with the all-cause mortality and cardiovascular mortality in general population: a meta-analysis. Am. J. Med. Sci. 2019; 358(3): 191–9. https://doi.org/10.1016/j.amjms.2019.05.016
- Ergul A.B., Turanoglu C., Karakukcu C., Karaman S., Torun Y.A. Increased iron deficiency and iron deficiency anemia in children with zinc deficiency. Eurasian J. Med. 2018; 50(1): 34–7. https://doi.org/10.5152/eurasianjmed.2017.17237
- Papp L.V., Holmgren A., Khanna K.K. Selenium and selenoproteins in health and disease. Antioxid. Redox Signal. 2010; 12(7): 793–5. https://doi.org/10.1089/ars.2009.2973
- Gromova O.A., Gogoleva I.V. Selenium-impressive results and prospects of application. Trudnyy patsient. 2007; 5(14): 25–30. (in Russian)
- Burk R.F., Hill K.E. Regulation of selenium metabolism and transport. Annu. Rev. Nutr. 2015; 35: 109–34. https://doi.org/1146/annurev-nutr-071714-034250
- Schomburg L., Orho-Melander M., Struck J., Bergmann A., Melander O. Selenoprotein-P deficiency predicts cardiovascular disease and death. Nutrients. 2019; 11(8): 1852. https://doi.org/10.3390/nu11081852
- Lubos E., Sinning C.R., Schnabel R.B., Wild P.S., Zeller T., Rupprecht H.J., et al. Serum selenium and prognosis in cardiovascular disease: results from the AtheroGene study. Atherosclerosis. 2010; 209(1): 271–7. https://doi.org/10.1016/j.atherosclerosis.2009.09.008
- Ren H., Mu J., Ma J., Gong J., Li J., Wang J., et al. Selenium inhibits homocysteine-induced endothelial dysfunction and apoptosis via activation of AKT. Cell Physiol. Biochem. 2016; 38(3): 871–82. https://doi.org/10.1159/000443041
- Hu X.F., Stranges S., Chan L.H.M. Circulating selenium concentration is inversely associated with the prevalence of stroke: results from the Canadian health measures survey and the national health and nutrition examination survey. J. Am. Heart Assoc. 2019; 8(10): e012290. https://doi.org/10.1161/JAHA.119.012290
- Radchenko E.N., Nizov A.A., Ivanova A.Yu., Sidorova Yu.S. The content of selen in blood plasma in patients with acute Q-wave myocardial infarction. Voprosy pitaniya. 2015; 84(3): 64–9. (in Russian)
- Radchenko E.N., Nizov A.A., Ivanova A.Yu., Sidorova Yu.S., Mazo V.K. Clinicofunctional and biochemical values in Q-wave myocardial infarction (QMI) patients on background of dietary correction with selenium and standard treatment. Kardiologiya i serdechno-sosudistaya khirurgiya. 2017; 10(5): 20–5. https://doi.org/10.17116/kardio201710520-25 (in Russian)
- Rees K., Hartley L., Day C., Flowers N., Clarke A., Stranges S. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013; 2013(1): CD009671. https://doi.org/10.1002/14651858.CD009671.pub2
Supplementary files
