Using human cell culture to assess the toxicity of water(literature review)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The problem of water sources pollution, connected with increasing anthropogenic charge is attracting a lot of attention nowadays. Most of hygienic evaluation methods of water objects are based on physicochemical analysis of water samples. These methods can’t be considered as consistent in determination of full range of pollutants. Sanitary chemical analysis of water environment, coupled with biological testing seems to be more informative. One of the most prospective research trends nowadays is using human cell lines as test objects. During the preparation of this review, there were used following database sources: Scopus, Web of Science, PubMed, RISC. As a conclusion of performed sources analysis, we can point at high sensitivity of cell lines, extracted from human digestive (Caco-2, HepG2) and excretory systems (HEK-203) to the influence of pollutants taken from different water sources. The data obtained by the authors indicate both a cytopathic effect and a change in the cytochemical and cytomorphological characteristics of cell cultures under the influence of pollutants in water. The use of human cell cultures as test objects in water biotesting is an urgent direction in the study of water supply sources for drinking and household needs of the population without preliminary purification. The use of human cell cultures in the biotesting of water makes it possible to give not only a toxicological characteristic of water samples, but also to assess the possibility of developing an undesirable effect associated with the ingress of pollutants into the internal environment of the body.

Contribution:
Mamonova I.A. — concept and design of the study, writing the text, responsibility for the integrity of all parts of the article;
Kosheleva I.S. — collection and processing of material, writing text, editing;
Shirokov A.A. — writing the text, editing;
Gusev Yu.S. — concept and design of the study;
Mikerov A.N. — approval of the final version of the article, responsibility for the integrity of all parts of the article.

Gratitude. We thank research center «Symbiosis» and immunochemistry laboratory IBPPM RAS for their providing advisory assistance in the selection and analysis of literature data performing research within the framework of the project GR No. 121031100266-3.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgments. The study had no sponsorship. 

Received: March 22, 2023 / Accepted: May 31, 2023 / Published: June 20, 2023

Авторлар туралы

Irina Mamonova

Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Saratov State Medical University named after V.I. Razumovsky

Хат алмасуға жауапты Автор.
Email: mamonova.83@rambler.ru
ORCID iD: 0000-0003-3941-4334

MD, Ph.D., researcher of Laboratory of chemical-biological monitoring of water quality of the Saratov Medical Scientific Centre of Hygiene of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Saratov, 410022, Russian Federation.

e-mail: mamonova.83@rambler.ru

Ресей

Irina Kosheleva

Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: noemail@neicon.ru
ORCID iD: 0000-0003-1992-5305
Ресей

Aleksandr Shirokov

Saratov State Medical University named after V.I. Razumovsky; N.G. Chernyshevsky Saratov National Research State University; Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: noemail@neicon.ru
ORCID iD: 0000-0003-4321-735X
Ресей

Yurij Gusev

Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; N.G. Chernyshevsky Saratov National Research State University; Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: noemail@neicon.ru
ORCID iD: 0000-0001-7379-484X
Ресей

Anatoly Mikerov

Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Saratov State Medical University named after V.I. Razumovsky

Email: noemail@neicon.ru
ORCID iD: 0000-0002-0670-7918
Ресей

Әдебиет тізімі

  1. Sommaggio L.R.D., Mazzeo D.E.C., Pamplona-Silva M.T., Marin-Morales M.A. Evaluation of the potential agricultural use of biostimulated sewage sludge using mammalian cell culture assays. Chemosphere. 2014; 199: 10–5. https://doi.org/10.1016/j.chemosphere.2018.01.144
  2. Heritier L., Duval D., Galinier R., Meistertzheim A.L., Verneas O. Oxidative stress induced by glyphosate-based herbicide on freshwater turtles. Environ. Toxicol. Chem. 2017, 36(12): 3343–50. https://doi.org/10.1002/etc.3916
  3. Trintinaglia L., Bianchi E., Silva L., Nascimento C., Spilki F., Ziulkoski A. Cytotoxicity assays as tools to assess water quality in the Sinos River basin. Braz. J. Biol. 2015; 75(2 Suppl.): 75–80. https://doi.org/10.1590/1519-6984.0113
  4. Miège C., Choubert J.M., Ribeiro L., Eusèbe M., Coquery M. Fate of pharmaceuticals and personal care products in wastewater treatment plants – conception of a database and first results. Environ. Pollut. 2009; 157(5): 1721–6. https://doi.org/10.1016/j.envpol.2008.11.045
  5. Zaytseva N.V., Sboev A.S., Kleyn S.V., Vekovshinina S.A. Drinking water quality: health risk factors and efficiency of control and surveillance activities by Rospotrebnadzor. Analiz riska zdorov’yu. 2019; (2): 44–55. https://doi.org/10.21668/health.risk/2019.2.05.eng https://elibrary.ru/sqdkxn
  6. Kosarev A.V., Ivanov D.E., Mikerov A.N., Savina K.A. Evaluation of a carcinogenic and non-carcinogenic health risks due to the quality of drinking water by springs in the arid zone. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2020; 99(11): 1294–300. https://doi.org/10.47470/0016-9900-2020-99-11-1294-1300 https://elibrary.ru/hvdgpu (in Russian)
  7. Novikova Yu.A., Markova O.L., Fridman K.B. Main aspects of minimization of population health risks caused by pharmaceutical pollution of surface sources of drinking water supply. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2018; 97(12): 1166–70. https://doi.org/10.18821/0016-9900-2018-97-12-1166-1170 https://elibrary.ru/vqbsob
  8. Russkikh Ya.V., Chernova E.N., Nekrasova L.V., Voyakina E.Yu., Nikiforov V.A., Zhakovskaya Z.A. The first results of identification of new ecotoxicants in waters of North-West RF. Regional’naya ekologiya. 2011; (1–2): 82–7. https://elibrary.ru/twhukv (in Russian)
  9. Nekrasova L., Russkikh Ya., Chernova E., Zhakovskaya Z., Nikiforov V., Ryzhov M. Simultaneous determination some pharmaceuticals using liquid chromatography-high resolution mass spectrometer LTQ orbitrap. Analitika. 2012; 2(3): 38–45. https://elibrary.ru/piespt (in Russian)
  10. Barenboym G.M., Chiganova M.A. Pharmaceutical pollution of surface and waste water. Voda: Khimiya i ekologiya. 2012; (10): 40–6. https://elibrary.ru/pdhjyv (in Russian)
  11. Prodous O.A., Shlychkov D.I. Forecasting continued operation of gravity drainage networks with deposits in pipe water troughs. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’. 2021; 11(4): 646–53. https://doi.org/10.21285/2227-2917-2021-4-646-653 https://elibrary.ru/oofpre (in Russian)
  12. Niss F., Rosenmai А.K., Mandava G., Örn S., Oskarsson A., Lundqvist J. Toxicity bioassays with concentrated cell culture media – a methodology to overcome the chemical loss by conventional preparation of water samples. Environ. Sci. Pollut. Res. Int. 2018; 25(12): 12183–8. https://doi.org/10.1007/s11356-018-1656-4
  13. Ivanov D.E., Suleymanov R.A., Kosarev A.V., Mikerov A.N., Kosheleva I.S., Valeev T.K. The possibilities of applying biotesting methods in the integrated assessment of the quality of surface water supply sources of the population. Meditsina truda i ekologiya cheloveka. 2022; (1): 159–76. https://doi.org/10.24411/2411-3794-2022-10111 https://elibrary.ru/fkevqr (in Russian)
  14. Doner’yan L.G., Vodyanova M.A. Substantiation of the place of alternative biological methods in hygienic research. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2018; 97(11): 1093–7. https://doi.org/10.18821/0016-9900-2018-97-11-1093-97 https://elibrary.ru/ypxhxv (in Russian)
  15. Mayachkina N.V., Chugunova M.V. Peculiarities of soil biotests to evaluate soil ecotoxicity. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2009; (1): 84–93. https://elibrary.ru/jwyeuf (in Russian)
  16. Jaeger N., Moraes J.P., Klauck C.R., Gehlen G., Rodrigues M.A., Ziulkoski A.L. Cytotoxicity assays to evaluate tannery effluents treated by photoelectrooxidation. Braz. J. Biol. 2015; 75(4 Suppl. 2): 53–61. https://doi.org/10.1590/1519-6984.01713suppl
  17. Burden N., Benstead R., Clook M., Doyle I., Edwards P., Maynard S.K., et al. Advancing the 3Rs in regulatory ecotoxicology: A pragmatic cross‐sector approach. Integr. Environ. Assess. Management. 2016; 12(3): 417–21. https://doi.org/10.1002/ieam.1703
  18. Bianchi E., Goldoni A., Trintinaglia L., Lessing G., Silva C.E.M., Nascimento C.A., et al. Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil. Braz. J. Biol. 2015; 75(2 Suppl.): 68–74. https://doi.org/10.1590/1519-6984.1913
  19. Poteser M. Cell-based in vitro models in environmental toxicology: a review. Biomonitoring. 2017; 4(1): 11–26. https://doi.org/10.1515/bimo-2017-0002
  20. Orescanin V., Kopjar N., Durgo K., Elez L., Gustek S.F., Colic J.F. Citotoxicity status of electroplating wastewater prior/after neutralization/purification with alkaline solid residue of electric arc furnace dust. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2009; 44(3): 273–8. https://doi.org/10.1080/10934520802597945
  21. Masood M.I., Hauke N.T., Nasim M.J., Sarfraz M., Naseem M., Schäfer K.H. Neural stem cell-based in vitro bioassay for the assessment of neurotoxic potential of water samples. J. Environ. Sci. (China). 2021; 101: 72–86. https://doi.org/10.1016/j.jes.2020.07.028
  22. Haber A.L., Biton M., Rogel N., Herbst R.H., Shekhar K., Smillie C., et al. A single-cell survey of the small intestinal epithelium. Nature. 2015; 551(7680): 333–9. https://doi.org/10.1038/nature24489
  23. Ma J.Y., Bao X.C., Tian W., Cui D.L., Zhang M.Y., Yang J. Effects of soil-extractable metals Cd and Ni from an e-waste dismantling site on human colonic epithelial cells Caco-2: Mechanisms and implications. Chemosphere. 2022; 292: 133361. https://doi.org/10.1016/j.chemosphere.2021.133361
  24. Rapa S.F., Di Paola R., Cordaro M., Siracusa R., D’Amico R., Fusco R. Plumericin protects against experimental inflammatory bowel disease by restoring intestinal barrier function and reducing apoptosis. Biomedicines. 2021; 9(1): 67. https://doi.org/10.3390/biomedicines9010067
  25. Tarasova E.Yu., Semenov E.I., Matrosova L.E., Mishina N.N., Mukharlyamova A.Z. Study of sorption activity of potential means of prevention of mycotoxicosis against aflatoxins. Veterinarnyy vrach. 2020; (2): 51–8. https://doi.org/10.33632/1998-698x.2020-2-51-58 https://elibrary.ru/eljdki (in Russian)
  26. Samsonov A.I. Cell culture as an object for assessing the toxicity of mycotoxins and in vitro protective agents (review). Vestnik Mariyskogo gosudarstvennogo universiteta. Seriya: Sel’skokhozyaystvennye nauki. Ekonomicheskie nauki. 2021; 7(3): 242–50. https://doi.org/10.30914/2411-9687-2021-7-3-242-250 https://elibrary.ru/nxighc (in Russian)
  27. Vila L., Marcos R., Hernández A. Long-term effects of silver nanoparticles in caco-2 cells. Nanotoxicology. 2017; 11(6): 771–80. https://doi.org/10.1080/17435390.2017.1355997
  28. Keemink J., Bergström C.A.S. Caco-2 cell conditions enabling studies of drug absorption from digestible lipid-based formulations. Pharm. Res. 2018; 35(4): 74. https://doi.org/10.1007/s11095-017-2327-8
  29. Shokhin I.E., Ramenskaya G.V., Kulinich Yu.I., Savchenko A.Yu. The study of intestinal permeability in vitro on a monolayer of epithelial Сaco-2 cells (review). Sechenovskiy vestnik. 2012; (3): 31–5. https://elibrary.ru/smhfar (in Russian)
  30. Husejnovic M.S., Bergant M., Jankovic S., Zizek S., Smajlovic A., Softic A., et al. Assessment of Pb, Cd and Hg soil contamination and its potential to cause cytotoxic and genotoxic effects in human cell lines (CaCo-2 and HaCaT). Environ. Geochem. Health. 2018: 40(4): 1557–72. https://doi.org/10.1007/s10653-018-0071-6
  31. Friha I., Bradai M., Johnson D., Hilal N., Loukil S., Amor F.B., et al. Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater. J. Environ. Manage. 2015; 160: 184–92. https://doi.org/10.1016/j.jenvman.2015.06.008.
  32. Orescanin V., Durgo K., Mikelic I.L., Halkijevic I., Kuspilic M. Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2018; 53(10): 925–30. https://doi.org/10.1080/10934529.2018.1462911
  33. Fotakis G., Timbrell J.A. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Letters. 2006; 160(2): 171–7. https://doi.org/10.1016/j.toxlet.2005.07.001
  34. Sussman J.L., Waltershied M., Butler T., Cali J.J., Riss T., Kelly J.H. The predictive nature of high-throughput toxicity screening using a human hepatocytes cell line. Cell Notes. 2002; 3: 7–10.
  35. Tselousova O.S., Vakhitova Yu.V., Vakhitov V.A. Cytotoxicity Assessment Tools and Methods [Mekhanizmy i metody otsenki tsitotoksichnosti]. Ufa; 2012. (in Russian)
  36. Knasmüller S., Mersch-Sundermann V., Kevekordes S., Darroudi F., Huber W.W., Hoelzl C. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology. 2004; 198(1–3): 315–28. https://doi.org/10.1016/j.tox.2004.02.008
  37. Uhl M., Helma C., Knasmüller S. Evaluation of the single cell gel electrophoresis assay with human hepatoma (Hep G2) cells. Mutat. Res. 2000; 468(2): 213–25. https://doi.org/10.1016/S1383-5718(00)00051
  38. Leme D.M., Primo F.L., Gobo G.G., Vieira da Costa C.R., Palma de Oliveira A.C.T.D. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system). J. Toxicol. Environ. Health. A. 2015; 78(7): 466–80. https://doi.org/10.1080/15287394.2014.999296
  39. Liu J., Song E., Liu L., Ma X., Tian X., Dong H., et al. Polychlorinated biphenyl quinone metabolites lead to oxidative stress in HepG2 cells and the protective role of dihydrolipoic acid. Toxicol. In Vitro. 2012; 26(6): 841–8. https://doi.org/10.1016/j.tiv.2012.04.028
  40. Mazzeo D.E.C., Fernandes T.C.C., Marin-Morales M.A. Attesting the efficiency of monitored natural attenuation in the detoxification of sewage sludge by means of genotoxic and mutagenic bioassays. Chemosphere. 2016; 163: 508–15. https://doi.org/10.1016/j.chemosphere.2016.08.060
  41. Sommaggio L.R.D., Mazzeo D.E.C., Pamplona-Silva M.T., Marin-Morales M.A. Evaluation of the potential agricultural use of biostimulated sewage sludge using mammalian cell culture assays. Chemosphere. 2018; 199: 10–5. https://doi.org/10.1016/j.chemosphere.2018.01.144
  42. Zulkarnain N.N., Anuar N., Johari N.A., Abdullah S.R.S., Othman A.R. Cytotoxicity evaluation of ketoprofen found in pharmaceutical wastewater on HEK 293 cell growth and metabolism. Environ. Toxicol. Pharmacol. 2020; 80: 103498. https://doi.org/10.1016/j.etap.2020.103498
  43. Acevedo-Barrios R., Sabater-Marco C., Olivero-Verbel J. Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environ. Sci. Pollut. Res. Int. 2018; 25(14): 13697–708. https://doi.org/10.1007/s11356-018-1565-6
  44. Zaritskaya E.V., Polozova E.V., Bogacheva A.S. Modern alternative toxicological research methods and prospects of their use in practical activities. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2017; 96(7): 671–4. https://doi.org/10.18821/0016-9900-2017-96-7-671-674 https://elibrary.ru/zfbyyf (in Russian)
  45. Afanas’eva A.N., Saparova V.B., Sel’menskikh T.A., Makarenko I.E. Optimal choice method of detection of the viability of cell cultures for tests on proliferation and cytotoxicity. Laboratornye zhivotnye dlya nauchnykh issledovaniy. 2021; (2): 16–24. https://doi.org/10.29296/2618723X-2021-02-03 https://elibrary.ru/oiaanc (in Russian)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Mamonova I.A., Kosheleva I.S., Shirokov A.A., Gusev Y.S., Mikerov A.N., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.