Идентификация потенциальной опасности потребления новых видов пищевых продуктов для здоровья населения (систематический обзор)

Обложка

Цитировать

Полный текст

Аннотация

Введение. Сокращение в мясной промышленности объёмов производства, в том числе связанное с борьбой с глобальным потеплением, неизбежно ведёт науку к поиску альтернативного источника белка. Однако с появлением новых пищевых продуктов возникает и потенциальная опасность для здоровья при их потреблении.

Материалы и методы. С целью поиска информации о потенциальной опасности для здоровья человека при потреблении наиболее распространённых новых видов пищевых продуктов выполнен систематический обзор релевантных источников информации с применением рекомендаций для проведения систематических обзоров исследований PRISMA. Проанализировано на соответствие поставленной цели более двух тысяч источников с последующим выделением 64 основных.

Результаты. В рамках обзора установлены и рассмотрены три группы новых видов пищевых продуктов животного происхождения, наиболее часто встречающиеся в исследованиях по изучению потенциальных опасностей для здоровья человека. Проведён анализ потенциальных опасностей при употреблении новых видов пищевых продуктов. Установлено, что следует уделять внимание возможному изменению биологической ценности белка нового вида пищевого продукта, наличию незаявленных и (или) непреднамеренно присутствующих химических веществ, гиперреактивности иммунной системы человека. Кроме того, при использовании белка насекомых и ГМ-животных в качестве пищевого сырья следует учитывать наличие патогенных микроорганизмов. При этом при оценке пищевых продуктов, произведённых с использованием ГМ-животных, необходимо уделять внимание потенциальной опасности, связанной с возможной передачей изменённых генов условно патогенной микрофлоре кишечника.

Ограничения исследования. Исследования в области оценки потенциальных опасностей для здоровья населения при потреблении новых видов пищевых продуктов относятся только к «новой пище» животного происхождения.

Заключение. Систематический обзор релевантных источников информации, выполненный с целью определения потенциальных угроз, связанных с потреблением новых видов пищевых продуктов животного происхождения, позволяет обеспечить реализацию идентификации потенциальной опасности как первого этапа оценки риска для здоровья.

Соблюдение этических стандартов. Для проведения данного исследования, выполненного на базе анализа общедоступных данных, не требовалось заключения комитета по биомедицинской этике.

Участие авторов:
Шур П.З. — концепция и дизайн исследования, редактирование;
Суворов Д.В. — концепция и дизайн исследования, сбор и обработка материала, написание текста, редактирование;
Зеленкин С.Е. — концепция и дизайн исследования, сбор и обработка материала, написание текста, редактирование;
Лир Д.Н. — концепция и дизайн исследования, редактирование.
Все соавторы — утверждение окончательного варианта статьи, ответственность за целостность всех частей статьи.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов в связи с публикацией данной статьи.

Финансирование. Исследование не имело спонсорской поддержки.

Поступила: 09.03.2023 / Принята к печати: 31.05.2023 / Опубликована: 20.06.2023

Об авторах

Павел З. Шур

ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

Автор, ответственный за переписку.
Email: noemail@neicon.ru
ORCID iD: 0000-0001-5171-3105
Россия

Дмитрий Владимирович Суворов

ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

Email: Suvorov@fcrisk.ru
ORCID iD: 0000-0002-3594-2650

Науч. сотр. отд. анализа риска для здоровья ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» Роспотребнадзора, Россия, 614045, Пермь.

e-mail: Suvorov@fcrisk.ru

Россия

Сергей Е. Зеленкин

ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека

Email: noemail@neicon.ru
ORCID iD: 0000-0002-0259-5509
Россия

Дарья Н. Лир

ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека; ФГБОУ ВО «Пермский государственный медицинский университет имени академика Е.А. Вагнера» Министерства здравоохранения Российской Федерации

Email: noemail@neicon.ru
ORCID iD: 0000-0002-7738-6832
Россия

Список литературы

  1. Савельева А.В. Роль продовольственной проблемы в современной мировой экономике. Экономический журнал ВШЭ. 2013; 17(3): 524–39. https://www.elibrary.ru/rnlyof
  2. The European insect sector today: challenges, opportunities and regulatory landscape. IPIFF vision paper on the future of the insect sector towards 2030. International Platform of Insects for Food and Feed; 2018.
  3. Никуличев Ю.В. Глобальная продовольственная проблема. М.; 2020. https://www.elibrary.ru/gposfg
  4. Kim T.K., Yong H.I., Kim Y.B., Kim H.W., Choi Y.S. Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Sci. Anim. Resour. 2019; 39(4): 521–40. https://doi.org/10.5851/kosfa.2019.e53
  5. European Commission. Novel Food. Available at: https://food.ec.europa.eu/safety/novel-food_en
  6. Commission Implementing Regulation (EU) 2023/5 of 3 January 2023 authorising the placing on the market of Acheta domesticus (house cricket) partially defatted powder as a novel food and amending Implementing Regulation (EU) 2017/2470. Available at: http://data.europa.eu/eli/reg_impl/2023/5/oj
  7. Singapore Food Agency. Safety of Alternative Protein. Available at: https://www.sfa.gov.sg/food-information/risk-at-a-glance/safety-of-alternative-protein
  8. Зайцева Н.В., Онищенко Г.Г., Май И.В., Шур П.З. Развитие методологии анализа риска здоровью в задачах государственного управления санитарно-эпидемиологическим благополучием населения. Анализ риска здоровью. 2022; (3): 4–20. https://doi.org/10.21668/health.risk/2022.3.01 https://elibrary.ru/imrune
  9. Fraeye I., Kratka M., Vandenburgh H., Thorrez L. Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: much to be inferred. Front. Nutr. 2020; 7: 35. https://doi.org/10.3389/fnut.2020.00035
  10. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71. https://doi.org/10.1136/bmj.n71
  11. Post M.J. Cultured beef: medical technology to produce food. J. Sci. Food Agric. 2014; 94(6): 1039–41. https://doi.org/10.1002/jsfa.6474
  12. Ben-Arye T., Levenberg S. Tissue engineering for clean meat production. Front. Sustain. Food Syst. 2019; 3: 46. https://doi.org/10.3389/fsufs.2019.00046
  13. Bhat Z.F., Bhat H., Pathak V. Chapter 79 – Prospects for in vitro cultured meat – a future harvest. In: Lanza R, Langer R, Vacanti J., eds. Principles of Tissue Engineering. Boston, MA: Academic Press; 2014: 1663–83.
  14. Munteanu C., Mireşan V., Răducu C., Ihuţ A., Uiuiu P., Pop D., et al. Can cultured meat be an alternative to farm animal production for a sustainable and healthier lifestyle? Front. Nutr. 2021; 8: 749298. https://doi.org/10.3389/fnut.2021.749298
  15. D’Este M., Alvarado-Morales M., Angelidaki I. Amino acids production focusing on fermentation technologies – A review. Biotechnol. Adv. 2018; 36(1): 14–25. https://doi.org/10.1016/j.biotechadv.2017.09.001
  16. Quiroga-Campano A.L., Panoskaltsis N., Mantalaris A. Energy-based culture medium design for biomanufacturing optimization: A case study in monoclonal antibody production by GS-NS0 cells. Metab. Eng. 2018; 47: 21–30. https://doi.org/10.1016/j.ymben.2018.02.013
  17. Hosios A.M., Hecht V.C., Danai L.V., Johnson M.O., Rathmell J.C., Steinhauser M.L., et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell. 2016; 36(5): 540–9. https://doi.org/10.1016/j.devcel.2016.02.012
  18. Restani P., Ballabio C., Tripodi S., Fiocchi A. Meat allergy. Curr. Opin. Allergy. Clin. Immunol. 2009; 9(3): 265–9. https://doi.org/10.1097/ACI.0b013e32832aef3d
  19. Shapiro P. Clean meat: how growing meat without animals will revolutionize dinner and the world. Science. 2018; 359(6374): 399. https://doi.org/10.1126/science.aas8716
  20. Gahukar R.T. Edible Insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. In: Insects as Sustainable Food Ingredients. Production, Processing and Food Applications. Academic Press; 2016: 85–111. https://doi.org/10.1016/b978-0-12-802856-8.00004-1
  21. EFSA Scientific Committee. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015; 13(10): 4257. https://doi.org/10.2903/j.efsa.2015.4257
  22. van der Fels-Klerx H.J., Camenzuli L., van der Lee M.K., Oonincx D.G. Uptake of cadmium, lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates. PLoS One. 2016; 11(11): e0166186. https://doi.org/10.1371/journal.pone.0166186
  23. Mwangi M.N., Oonincx D.G.A.B., Stouten T., Veenenbos M., Melse-Boonstra A., Dicke M., et al. Insects as sources of iron and zinc in human nutrition. Nutr. Res. Rev. 2018; 31(2): 248–55. https://doi.org/10.1017/S0954422418000094
  24. Maryański M., Kramarz P., Laskowski R., Niklińska M. Decreased energetic reserves, morphological changes and accumulation of metals in carabid beetles (Poecilus cupreus L.) exposed to zinc- or cadmium-contaminated food. Ecotoxicology. 2002; 11(2): 127–39. https://doi.org/10.1023/a:1014425113481
  25. Devkota B., Schmidt G.H. Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agric. Ecosyst. Environ. 2000; 78(1): 85–91. https://doi.org/10.1016/s0167-8809(99)00110-3
  26. Handley M.A., Hall C., Sanford E., Diaz E., Gonzalez-Mendez E., Drace K., et al. Globalization, binational communities, and imported food risks: results of an outbreak investigation of lead poisoning in Monterey County, California. Am. J. Public Health. 2007; 97(5): 900–6. https://doi.org/10.2105/AJPH.2005.074138
  27. Jamil K., Hussain S. Biotransfer of metals to the insect Neochetina eichhornae via aquatic plants. Arch. Environ. Contam. Toxicol. 1992; 22: 459–63. https://doi.org/10.1007/bf00212568
  28. Lindqvist L., Block M. Excretion of cadmium during moulting and metamorphosis in Tenebrio molitor (Coleoptera; Tenebrionidae). Comp. Biochem. Physiol. C. 1995; 111(2): 325–8. https://doi.org/10.1016/0742-8413(95)00057-U
  29. Mlček J. Detection of selected heavy metals and micronutrients in edible insect and their dependency on the feed using XRF spectrometry. Potravinarstvo Slovak J. Food Sci. 2017; 11: 725–30. https://doi.org/10.5219/850
  30. Bednarska A.J., Opyd M., Żurawicz E., Laskowski R. Regulation of body metal concentrations: Toxicokinetics of cadmium and zinc in crickets. Ecotoxicol. Environ. Saf. 2015; 119: 9–14. https://doi.org/10.1016/j.ecoenv.2015.04.056
  31. Diener S., Studt Solano N.M., Roa Gutiérrez F., Zurbrügg C., Tockner K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valor. 2011; 2: 357–63. https://doi.org/10.1007/s12649-011-9079-1
  32. de Carvalho N.M., Madureira A.R., Pintado M.E. The potential of insects as food sources – a review. Crit. Rev. Food Sci. Nutr. 2020; 60(21): 3642–52. https://doi.org/10.1080/10408398.2019.1703170
  33. Purschke B., Scheibelberger R., Axmann S., Adler A., Jäger H. Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2017; 34(8): 1410–20. https://doi.org/10.1080/19440049.2017.1299946
  34. Pan J., Xu H., Cheng Y., Mintah B.K., Dabbour M., Yang F., et al. Recent insight on edible insect protein: extraction, functional properties, allergenicity, bioactivity, and applications. Foods. 2022; 11(19): 2931. https://doi.org/10.3390/foods11192931
  35. Montowska M., Kowalczewski P.Ł., Rybicka I., Fornal E. Nutritional value, protein and peptide composition of edible cricket powders. Food Chem. 2019; 289: 130–8. https://doi.org/10.1016/j.foodchem.2019.03.062
  36. Limacher A., Kerler J., Davidek T., Schmalzried F., Blank I. Formation of furan and methylfuran by maillard-type reactions in model systems and food. J. Agric. Food Chem. 2008; 56(10): 3639–47. https://doi.org/10.1021/jf800268t
  37. Limacher A., Kerler J., Conde-Petit B., Blank I. Formation of furan and methylfuran from ascorbic acid in model systems and food. Food Addit. Contam. 2007; 24(Suppl. 1): 122–35. https://doi.org/10.1080/02652030701393112
  38. David-Birman T., Raften G., Lesmes U. Effects of thermal treatments on the colloidal properties, antioxidant capacity and in-vitro proteolytic degradation of cricket flour. Food Hydrocoll. 2018; 79: 48–54. https://doi.org/10.1016/j.foodhyd.2017.11.044
  39. Wasala L., Talley J.L., Desilva U., Fletcher J., Wayadande A. Transfer of Escherichia coli O157:H7 to spinach by house flies, Musca domestica (Diptera: Muscidae). Phytopathology. 2013; 103(4): 373–80. https://doi.org/10.1094/PHYTO-09-12-0217-FI
  40. Graczyk T.K., Knight R., Tamang L. Mechanical transmission of human protozoan parasites by insects. Clin. Microbiol. Rev. 2005; 18(1): 128–32. https://doi.org/10.1128/CMR.18.1.128-132.2005
  41. Strother K.O., Steelman C.D., Gbur E.E. Reservoir competence of lesser mealworm (Coleoptera: Tenebrionidae) for Campylobacter jejuni (Campylobacterales: Campylobacteraceae). J. Med. Entomol. 2005; 42(1): 42–7. https://doi.org/10.1093/jmedent/42.1.42
  42. Dossey A., Morales-Ramos J.A., Guadalupe R.M. Insects as Sustainable Food Ingredients: Production, Processing and Food Applications. London: Academic Press; 2016. https://doi.org/10.1016/c2014-0-03534-4
  43. Vandeweyer D., Wynants E., Crauwels S., Verreth C., Viaene N., Claes J., et al. Microbial dynamics during industrial rearing, processing, and storage of tropical house crickets (Gryllodes sigillatus) for human consumption. Appl. Environ. Microbiol. 2018; 84(12): e00255-18. https://doi.org/10.1128/AEM.00255-18
  44. ANSES (French Agency for Food, Environmental and Occupational Health and Safety). Opinion on the use of insects as food and feed and the review of scientific knowledge on the health risks related to the consumption of insects; 2015. Available at: https://www.anses.fr/en/documents/BIORISK2014sa0153EN.pdf
  45. Wynants E., Crauwels S., Verreth C., Gianotten N., Lievens B., Claes J., et al. Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale. Food Microbiol. 2018; 70: 181–91. https://doi.org/10.1016/j.fm.2017.09.012
  46. Osimani A., Milanović V., Cardinali F., Garofalo C., Clementi F., Pasquini M., et al. The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. Int. J. Food Microbiol. 2018; 272: 49–60. https://doi.org/10.1016/j.ijfoodmicro.2018.03.001
  47. Osimani A., Milanović V., Cardinali F., Garofalo C., Clementi F., Ruschioni S., et al. Distribution of transferable antibiotic resistance genes in laboratory-reared edible mealworms (Tenebrio molitor L.). Front. Microbiol. 2018; 9: 2702. https://doi.org/10.3389/fmicb.2018.02702
  48. Oonincx D.G., Dierenfeld E.S. An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol. 2012; 31(1): 40–54. https://doi.org/10.1002/zoo.20382
  49. Panzani R.C., Ariano R. Arthropods and invertebrates allergy (with the exclusion of mites): the concept of panallergy. Allergy. 2001; 56(Suppl. 69): 1–22. https://doi.org/10.1111/j.1398-9995.2001.tb04419.x
  50. Тышко Н.В., Садыкова Э.О. Генно-инженерно-модифицированная пищевая продукция: развитие российской системы оценки безопасности. Анализ риска здоровью. 2018; (4): 120–7. https://doi.org/10.21668/health.risk/2018.4.14 https://elibrary.ru/yugsbn
  51. Tutelyan V.A. Genetically Modified Food Sources. Safety Assessment and Control. Elsevier Inc.; 2013. https://doi.org/10.1016/b978-0-12-405878-1.00011-2
  52. FDA. FDA Approves First-of-its-Kind Intentional Genomic Alteration in Line of Domestic Pigs for Both Human Food, Potential Therapeutic Uses. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-first-its-kind-intentional-genomic-alteration-line-domestic-pigs-both-human-food
  53. FDA. Statement from FDA Commissioner Scott Gottlieb, M.D., on continued efforts to advance safe biotechnology innovations, and the deactivation of an import alert on genetically engineered salmon. Available at: https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-continued-efforts-advance-safe-biotechnology
  54. Preliminary Finding of No Significant Impact (FONSI) for AquAdvantage Salmon. U.S. Food and Drug Administration; 2012. Available at: https://www.fda.gov/media/93823/download
  55. Draft Amended Environmental Assessment for Production of AquAdvantage Salmon at the Bay Fortune and Rollo Bay Facilities on Prince Edward Island, Canada. U.S. Food and Drug Administration; 2022. Available at: https://www.fda.gov/media/163153/download
  56. Trott J.F. Animal health and food safety analyses of six offspring of a genome-edited hornless bull. GEN Biotechnology. 2022; 1(2): 192–206. https://doi.org/10.1089/genbio.2022.0008
  57. Boisen S., Hvelplund T., Weisbjerg M.R. Ideal amino acid profiles as a basis for feed protein evaluation. Livest. Prod. Sci. 2000; 64(2): 239–51. https://doi.org/10.1016/s0301-6226(99)00146-3
  58. Han Y., Suzuki H., Parsons C.M., Baker D.H. Amino acid fortification of a low-protein corn and soybean meal diet for chicks. Poult. Sci. 1992; 71(7): 1168–78. https://doi.org/10.3382/ps.0711168
  59. Waldroup P.W., Mitchell R.J., Payne J.R., Hazen K.R. Performance of chicks fed diets formulated to minimize excess levels of essential amino acids. Poult. Sci. 1976; 55(1): 243–53. https://doi.org/10.3382/ps.0550243
  60. Herrmann K., Somerville R.L., eds. Amino Acids: Biosynthesis and Genetic Regulation. Volume 3. Reading. Massachusetts: Addison-Wesley Publishing Company, Inc; 1983.
  61. European Federation of Biotechnology. Braun R. Antibiotic Resistance Markers in Genetically Modified (GM) Grops. Task Group On Public Perceptions of Biotechnology; 2001. Available at: https://studyres.com/doc/622827/antibiotic-resistance-markers-in-genetically-modified–gm
  62. Chen I.C., Thiruvengadam V., Lin W.D., Chang H.H., Hsu W.H. Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant. Mol. Biol. 2010; 72(1-2): 153–69. https://doi.org/10.1007/s11103-009-9558-y
  63. Dunn S.E., Vicini J.L., Glenn K.C., Fleischer D.M., Greenhawt M.J. The allergenicity of genetically modified foods from genetically engineered crops: A narrative and systematic review. Ann. Allergy Asthma Immunol. 2017; 119(3): 214–22.e3. https://doi.org/10.1016/j.anai.2017.07.010
  64. A RethinkX Sector Disruption Report. Rethinking Food and Agriculture 2020–2030. Birmingham, UK: RethinkX; 2019.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Шур П.З., Суворов Д.В., Зеленкин С.Е., Лир Д.Н., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.