Integral indicators of cardiotoxicity of lead and cadmium on the background of physical activity
- Authors: Klinova S.V.1, Minigalieva I.A.1, Sutunkova M.P.1, Shabardina L.V.1
-
Affiliations:
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
- Issue: Vol 102, No 11 (2023)
- Pages: 1228-1235
- Section: PREVENTIVE TOXICOLOGY AND HYGIENIC STANDARTIZATION
- Published: 13.12.2023
- URL: https://rjpbr.com/0016-9900/article/view/638305
- DOI: https://doi.org/10.47470/0016-9900-2023-102-11-1228-1235
- EDN: https://elibrary.ru/nunamk
- ID: 638305
Cite item
Full Text
Abstract
Introduction. Modern metallurgical production is characterized by mixed exposure of workers to harmful chemicals, of which lead and cadmium are the most common. A high physical workload is yet another occupational risk factor for metallurgists.
Objective. Experimental study of effects of lead or cadmium and physical load on integral indicators of cardiotoxicity in rats.
Materials and methods. We have carried out two 6-week experiments on rats to study integral indicators of cardiotoxicity of lead or cadmium and their changes under effect of physical activity. Solutions of lead or cadmium salts were administered intraperitoneally three times a week. Physical workload was simulated on a treadmill (10 min/day, 5 days a week). At the end of the experiment, electrocardiogram and blood pressure parameters were registered non-invasively.
Results. Lead and cadmium had a cardiotoxic effect manifested by ECG changes. No pronounced hemodynamic changes were observed in our studies. According to ECG parameters, physical load slightly mitigates cardiotoxic effects of lead, but enhances manifestations of cadmium toxicity.
Limitations. Data comparison can be affected by the fact that both outbred and inbred rats were used in the experiments. Caution should be taken when extrapolating animal data to humans since electrophysiological processes in the work of the heart differ in small rodents and large mammals.
Conclusion. The established ambiguity of the impact of the physical workload on cardiotoxic effects of heavy metals necessitates further studies of this problem.
Compliance with ethical standards. The studies were approved by the Local Ethics Committee of the Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers (protocol No. 8 of November 8, 2018, protocol No. 4 of September 30, 2022).
Contribution:
Klinova S.V. — the concept and design of the study, collection and processing of material, statistical processing, writing a text; Minigalieva I.A. — the concept and design of the study, editing;
Sutunkova M.P. — the concept and design of the study;
Shabardina L.V. — editing. All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: October 3, 2023 / Accepted: November 15, 2023 / Published: December 8, 2023
About the authors
Svetlana V. Klinova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Author for correspondence.
Email: klinova.svetlana@gmail.com
ORCID iD: 0000-0002-0927-4062
MD, PhD, Head of the Laboratory of Industrial Toxicology, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Yekaterinburg, 620014, Russian Federation
e-mail: klinovasv@ymrc.ru
Russian FederationIlzira A. Minigalieva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0002-0097-7845
Доктор биологических наук, заведующий отделом токсикологии и биопрофилактики, ФБУН «Екатеринбургский медицинский-научный центр профилактики и охраны здоровья рабочих промпредприятий» Роспотребнадзора, 620014, Екатеринбург, Российская Федерация
Russian FederationMarina P. Sutunkova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0002-1743-7642
Доктор медицинских наук, директор ФБУН «Екатеринбургский медицинский-научный центр профилактики и охраны здоровья рабочих промпредприятий» Роспотребнадзора, 620014, Екатеринбург, Российская Федерация
Russian FederationLada V. Shabardina
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0002-8284-0008
Младший научный сотрудник отдела токсикологии и биопрофилактики, ФБУН «Екатеринбургский медицинский-научный центр профилактики и охраны здоровья рабочих промпредприятий» Роспотребнадзора, 620014, Екатеринбург, Российская Федерация
Russian FederationReferences
- Yang A.M., Lo K., Zheng T.Z., Yang J.L., Bai Y.N., Feng Y.Q., et al. Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Dis. Transl. Med. 2020; 6(4): 251–9. https://doi.org/10.1016/j.cdtm.2020.02.005
- Charkiewicz A.E., Backstrand J.R. Lead toxicity and pollution in Poland. Int. J. Environ. Res. Public Health. 2020; 17(12): 4385. https://doi.org/10.3390/ijerph17124385
- Chen Z., Huo X., Chen G., Luo X., Xu X. Lead (Pb) exposure and heart failure risk. Environ. Sci. Pollut. Res. Int. 2021; 28(23): 28833–47. https://doi.org/10.1007/s11356-021-13725-9
- WHO. Lead poisoning; 2023. Available at: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health
- Bressler J.P., Goldstein G.W. Mechanisms of lead neurotoxicity. Biochem. Pharmacol. 1991; 41(4): 479–84. https://doi.org/10.1016/0006-2952(91)90617-e
- Chai S.S., Webb R.C. Effects of lead on vascular reactivity. Environ. Health Perspect. 1988; 78: 85–89. https://doi.org/10.1289/ehp.887885
- Silveira E.A., Siman F.D., de Oliveira Faria T., Vescovi M.V., Furieri L.B., Lizardo J.H., et al. Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free Radic. Biol. Med. 2014; 67: 366–76. https://doi.org/10.1016/j.freeradbiomed.2013.11.021
- Davuljigari C.B., Gottipolu R.R. Late-life cardiac injury in rats following early life exposure to lead: reversal effect of nutrient metal mixture. Cardiovasc. Toxicol. 2020; 20(3): 249–60. https://doi.org/10.1007/s12012-019-09549-2
- Elgharabawy R.M., Alhowail A.H., Emara A.M., Aldubayan M.A., Ahmed A.S. The impact of chicory (Cichoriumintybus L.) on hemodynamic functions and oxidative stress in cardiac toxicity induced by lead oxide nanoparticles in male rats. Biomed. Pharmacother. 2021; 137: 111324. https://doi.org/10.1016/j.biopha.2021.111324
- Carmignani M., Volpe A.R., Boscolo P., Qiao N., Di Gioacchino M., Grilli A., et al. Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sci. 2000; 68(4): 401–15. https://doi.org/10.1016/s0024-3205(00)00954-1
- Possomato-Vieira J.S., Gonçalves-Rizzi V.H., do Nascimento R.A., Wandekin R.R., Caldeira-Dias M., Chimini J.S., et al. Clinical and experimental evidences of hydrogen sulfide involvement in lead-induced hypertension. Biomed Res. Int. 2018; 2018: 4627391. https://doi.org/10.1155/2018/4627391
- Simões M.R., Preti S.C., Azevedo B.F., Fiorim J., Freire D.D. Jr, Covre E.P., et al. Low-level chronic lead exposure impairs neural control of blood pressure and heart rate in rats. Cardiovasc. Toxicol. 2017; 17(2): 190–9. https://doi.org/10.1007/s12012-016-9374-y
- Simões M.R., Azevedo B.F., Alonso M.J., Salaices M., Vassallo D.V. Chronic low-level lead exposure increases mesenteric vascular reactivity: role of cyclooxygenase-2-derived prostanoids. Front. Physiol. 2021; 11: 590308. https://doi.org/10.3389/fphys.2020.590308
- Navas-Acien A., Guallar E., Silbergeld E.K., Rothenberg S.J. Lead exposure and cardiovascular disease. A systematic review. Environ. Health Perspect. 2007; 115(3): 472–82. https://doi.org/10.1289/ehp.9785
- Shvachiy L., Geraldes V., Amaro-Leal Â., Rocha I. Persistent effects on cardiorespiratory and nervous systems induced by long-term lead exposure: results from a longitudinal study. Neurotox. Res. 2020; 37(4): 857–70. https://doi.org/10.1007/s12640-020-00162-8
- Machoń-Grecka A., Dobrakowski M., Kasperczyk A., Birkner E., Kasperczyk S. Angiogenesis and lead (Pb): is there a connection? Drug Chem. Toxicol. 2022; 45(2): 589–93. https://doi.org/10.1080/01480545.2020.1734607
- Elinder C.G., Kjellström T., Hogstedt C., Andersson K., Spång G. Cancer mortality of cadmium workers. Br. J. Ind. Med. 1985; 42(10): 651–5. https://doi.org/10.1136/oem.42.10.651
- Ernst P., Thériault G. Known occupational carcinogens and their significance. Can. Med. Assoc. J. 1984; 130(7): 863–7.
- IARC. Review of Human Carcinogens (Package of 6 Volumes: A, B, C, D, E, F). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; 2012. Available at: https://publications.iarc.fr/124
- WHO. Children and digital dumpsites: E-waste exposure and child health; 2021. Available at: https://www.who.int/publications/i/item/9789240023901
- Genchi G., Sinicropi M.S., Lauria G., Carocci A., Catalano A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health. 2020; 17(11): 3782. https://doi.org/10.3390/ijerph17113782
- Ozturk I.M., Buyukakilli B., Balli E., Cimen B., Gunes S., Erdogan S. Determination of acute and chronic effects of cadmium on the cardiovascular system of rats. Toxicol. Mech. Methods. 2009; 19(4): 308–17. https://doi.org/10.1080/15376510802662751
- Turdi S., Sun W., Tan Y., Yang X.., Cai L.., Ren J. Inhibition of DNA methylation attenuates low-dose cadmium-induced cardiac contractile and intracellular Ca(2+) anomalies. Clin. Exp. Pharmacol. Physiol. 2013; 40(10): 706–12. https://doi.org/10.1111/1440-1681.12158
- Diaz D., Ujueta F., Mansur G., Lamas G.A., Navas-Acien A., Arenas I.A. Low-level cadmium exposure and atherosclerosis. Curr. Environ. Health Rep. 2021; 8(1): 42–53. https://doi.org/10.1007/s40572-021-00304-w
- Li X., Zheng Y., Zhang G., Wang R., Jiang J., Zhao H. Cadmium induced cardiac toxicology in developing Japanese quail (Coturnix japonica): Histopathological damages, oxidative stress and myocardial muscle fiber formation disorder. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021; 250: 109168. https://doi.org/10.1016/j.cbpc.2021.109168
- Katsnel’son B.A. About some mechanisms of a combined effect contributing to etiopathogenesis of silicosis. In: A Combined Effect of Chemical and Physical Factors of the Work Environment [Kombinirovannoe deystvie khimicheskikh i fizicheskikh faktorov proizvodstvennoy sredy]. Sverdlovsk; 1972: 10–9. (in Russian)
- Speich M., Pineau A., Ballereau F. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin. Chim. Acta. 2001; 312(1–2): 1–11. https://doi.org/10.1016/s0009-8981(01)00598-8
- Rodríguez Tuya I., Pinilla Gil E., Maynar Mariño M., García-Moncó Carra R.M., Sánchez Misiego A. Evaluation of the influence of physical activity on the plasma concentrations of several trace metals. Eur. J. Appl. Physiol. 1996; 73(3–4): 299–303. https://doi.org/10.1007/BF02425490
- Maynar-Mariño M., Llerena F., Bartolomé I., Crespo C., Muñoz D., Robles M.C., et al. Effect of long-term aerobic, anaerobic and aerobic-anaerobic physical training in seric toxic minerals concentrations. J. Trace Elem. Med. Biol. 2018; 45: 136–41. https://doi.org/10.1016/j.jtemb.2017.10.007
- Llerena F., Maynar M., Barrientos G., Palomo R., Robles M.C., Caballero M.J. Comparison of urine toxic metals concentrations in athletes and in sedentary subjects living in the same area of Extremadura (Spain). Eur. J. Appl. Physiol. 2012; 112(8): 3027–31. https://doi.org/10.1007/s00421-011-2276-6
- Chojnacka K., Zielińska A., Górecka H., Dobrzański Z., Górecki H. Reference values for hair minerals of Polish students. Environ. Toxicol. Pharmacol. 2010; 29(3): 314–9. https://doi.org/10.1016/j.etap.2010.03.010
- Skal’nyy A.A. Physical activity and trace element metabolism. Mikroelementy v meditsine. 2020; 21(2): 3–12. https://doi.org/10.19112/2413-6174-2020-21-2-3-12 https://elibrary.ru/pcbtxw (in Russian)
- Tian X., Xue B., Wang B., Lei R., Shan X., Niu J., et al. Physical activity reduces the role of blood cadmium on depression: A cross-sectional analysis with NHANES data. Environ. Pollut. 2022; 304: 119211. https://doi.org/10.1016/j.envpol.2022.119211
- Yushkov B.G., Korneva E.A., Chereshnev V.A. The Concept of Norm in Physiology and Pathology. Physiological Constants of Laboratory Animals [Ponyatie normy v fiziologii i patologii. Fiziologicheskie konstanty laboratornykh zhivotnykh]. Ekaterinburg; 2021. https://elibrary.ru/xhqgvo (in Russian)
- Xing N., Ji L., Song J., Ma J., Li S., Ren Z., et al. Cadmium stress assessment based on the electrocardiogram characteristics of zebra fish (Danio rerio): QRS complex could play an important role. Aquat. Toxicol. 2017; 191: 236–44. https://doi.org/10.1016/j.aquatox.2017.08.015
- Reznik E.V., Selivanov A.I., Lutsenko A.R., Garanina L.K., Golukhov G.N. Modern approaches to the management of patients with hyperkaliemia. Arkhiv” vnutrenney meditsiny. 2022; 12(1): 5–21. https://doi.org/10.20514/2226-6704-2022-12-1-5-21 https://elibrary.ru/qbumzc (in Russian)
- Obaid A.A., Almasmoum H., Almaimani R.A., El-Boshy M., Aslam A., Idris S., et al. Vitamin D and calcium co-therapy mitigates pre-established cadmium nephropathy by regulating renal calcium homeostatic molecules and improving anti-oxidative and anti-inflammatory activities in rat. J. Trace Elem. Med. Biol. 2023; 79: 127221. https://doi.org/10.1016/j.jtemb.2023.127221
- Reshetnyak O.A. Correlation between the cadmium, calcium and potassium in the body and indices of cardiovascular system of athletes. Pedagogika, psikhologiya i mediko-biologicheskie problemy fizicheskogo vospitaniya i sporta. 2013; (10): 68–73. https://elibrary.ru/rbddkp https://doi.org/10.6084/m9.figshare.775332 (in Russian)
- Gatagonova T.M. Bioelectric activity of the myocardium and the pumping function of the heart in workers involved in the production of lead. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 1995; (3): 16–9. https://elibrary.ru/yhebbt (in Russian)
- Burda I.Yu., Lysenko N.V., Yabluchanskiy N.I. Importance of QRS complex duration in the clinical course and outcomes of cardiovascular diseases. Vestnik Khar’kovskogo natsional’nogo universiteta imeni V.N. Karazina. Seriya: Meditsina. 2009; (17): 73–81. https://elibrary.ru/sfvxmf (in Russian)
- Regencia Z.J., Dalmacion G.V., Baja E.S. Effect of heavy metals on ventricular repolarization and depolarization in the Metropolitan Manila Development Authority (MMDA) traffic enforcers’ health study. Arch. Environ. Occup. Health. 2022; 77(2): 87–95. https://doi.org/10.1080/19338244.2020.1853017
- Peralta A.A., Schwartz J., Gold D.R., Coull B., Koutrakis P. Associations between PM2.5 metal components and QT interval length in the Normative Aging Study. Environ. Res. 2021; 195: 110827. https://doi.org/10.1016/j.envres.2021.110827
- Sroczyński J., Biskupek K., Piotrowski J., Rudzki H. Effect of occupational exposure to lead, zinc and cadmium on various indicators of the circulatory system of metallurgical workers. Med. Pr. 1990; 41(3): 152–8. (in Polish)
- Protsenko Y.L., Klinova S.V., Gerzen O.P., Privalova L.I., Minigalieva I.A., Balakin A.A., et al. Changes in rat myocardium contractility under subchronic intoxication with lead and cadmium salts administered alone or in combination. Toxicol. Rep. 2020; 7: 433–42. https://doi.org/10.1016/j.toxrep.2020.03.001
- Gudratov N.O. Inbred mice: advantages and disadvantages. Biomeditsina (Baku). 2004; (4): 40–2. (in Russian)
Supplementary files
