Regular Density Inhomogeneities in the Boundary Layer of the Plasmasphere
- Autores: Kotova G.A.1, Bezrukikh V.V.1, Chugunin D.V.1, Mogilevsky M.M.1, Chernyshov A.A.1
- 
							Afiliações: 
							- Space Research Institute, Russian Academy of Sciences
 
- Edição: Volume 63, Nº 6 (2023)
- Páginas: 715-723
- Seção: Articles
- URL: https://rjpbr.com/0016-7940/article/view/650968
- DOI: https://doi.org/10.31857/S0016794023700013
- EDN: https://elibrary.ru/EGFOPP
- ID: 650968
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Based on thermal plasma measurements on the MAGION-5 and INTERBALL-1 satellites in the plasmasphere boundary layer, similar recurring changes in the proton density were identified depending on the L-shell. Such density variations have the following characteristic features: (a) density variations occur sharply, on the density profile—the dependence of density on L or on geomagnetic latitude λ—they have a sawtooth nature, and the density of protons at the peaks (maxima) of variations exceeds that at the minima of variations by two to eight times; (b) the characteristic size of variations in the radial direction in the plane of the geomagnetic equator is ~0.15 RE or ~1000 km; (c) sawtooth changes in proton density in the plasmasphere boundary layer can span at least 90° in longitude; (d) regular variations in plasma density were observed at geomagnetic latitudes up to 30°, and this latitude is limited to the orbits of satellites whose data were used for the analysis. Sawtooth variations in thermal plasma density are apparently related to spatial structures that evolve but persist in the plasmasphere boundary layer, at least over the course of a day. Plasma inhomogeneities were observed in fairly quiet or slightly disturbed geomagnetic conditions. The considered inhomogeneities are probably a consequence of the interchange or quasi-interchange instability developing in the plasmasphere boundary layer.
Sobre autores
G. Kotova
Space Research Institute, Russian Academy of Sciences
														Email: kotova@iki.rssi.ru
				                					                																			                												                								Moscow, Russia						
V. Bezrukikh
Space Research Institute, Russian Academy of Sciences
														Email: kotova@iki.rssi.ru
				                					                																			                												                								Moscow, Russia						
D. Chugunin
Space Research Institute, Russian Academy of Sciences
														Email: kotova@iki.rssi.ru
				                					                																			                												                								Moscow, Russia						
M. Mogilevsky
Space Research Institute, Russian Academy of Sciences
														Email: kotova@iki.rssi.ru
				                					                																			                												                								Moscow, Russia						
A. Chernyshov
Space Research Institute, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: kotova@iki.rssi.ru
				                					                																			                												                								Moscow, Russia						
Bibliografia
- – Котова Г.А. Плазмосфера Земли. Современное состояние исследований // Геомагнетизм и аэрономия. Т. 47. № 4. С. 1–16. 2007. (Kotova G.A. The Earth’s plasmasphere: State of studies (a review) // Geomag. Aeron. V. 47. № 4. P. 409–422. 2007. – для англоязычного варианта статьи) https://doi.org/10.1134/S0016793207040019
- – Котова Г.А., Безруких В.В., Веригин М.И., Акеньтиева О.С., Шмилауэр Я.. Исследование каверн плотности в плазмосфере Земли по данным спутника МАГИОН 5 // Космич. исследов. Т. 46. № 1. С. 17–26. 2008. (Kotova G.A., Bezrukikh V.V., Verigin M.I., Akentieva O.S., Smilauer J. Study of notches in the Earth’s plasmasphere based on data of the MAGION-5 satellite // Cosmic Research. V. 46. № 1. P. 15–24. 2008. – для англоязычного варианта статьи) https://doi.org/10.1007/s10604-008-1003-5
- – Andre N., Lemaire J.F. Convective instabilities in the plasmasphere // J. Atm.Solar-Terr. Phys. V. 68. P. 213–227. 2006. https://doi.org/10.1016/j.jastp.2005.10.013
- – Bezrukikh V.V., Gringauz K.I. The hot zone in the outer plasmasphere of the Earth // Journal of Atmospheric and Terrestrial Physics. V. 38. P. 1085–1091. 1976. https://doi.org/10.1016/0021-9169(76)90038-6
- – Carpenter D.L., Anderson R.R. An ISEE/whistler model of equatorial electron density in the magnetosphere // J. Geophys. Res. V. 97. P. 1097–1108. 1992. https://doi.org/10.1029/91JA01548
- – Carpenter D., Lemaire, J. The plasmasphere boundary layer // Annales Geophysicae. V. 22. № 12. P. 4291–4298. 2004. https://doi.org/10.5194/angeo-22-4291-2004
- – Comfort R.H. Thermal structure of the plasmasphere // Adv. Space Res. V. 17. № 10. P. 175–184. 1996. https://doi.org/10.1016/0273-1177(95)00710-V
- – Darrouzet F., Decreau P.M.E., De Keyser J., Masson A., Gallagher D.L., Santolik O., Sandel B.R., Trotignon J.G., Rauch J.L., Guirriec E.Le, Canu P., Sedgemore F., Andre M., Lemaire J.F. Density structures inside the plasmasphere: Cluster observations // Annales Geophysicae. V. 22. № 7. P. 2577–2585. 2004. https://doi.org/10.5194/angeo-22-2577-2004
- – Darrouzet F., Gallagher D.L., André N. et al. Plasmaspheric Density Structures and Dynamics: Properties Observed by the CLUSTER and IMAGE Missions // Space Sci. Rev. V. 145. P. 55–106. 2009. https://doi.org/10.1007/s11214-008-9438-9
- – Ferradas C.P., Boardsen S.A., Fok M.-C., Buzulukova N., Reeves G.D., Larsen B.A. Observations of density cavities and associated warm ion flux enhancements in the inner magnetosphere // J. Geophys. Res. V. 126. № 3. 2020. https://doi.org/10.1029/2020JA028326
- – Gold T. Motions in the magnetosphere of the Earth // J. Geophys. Res. V.64. № 9. P. 1219–1224. 1959. https://doi.org/10.1029/JZ064i009p01219
- – He F., Guo R.-L., Dunn W.R. et al. Plasmapause surface wave oscillates the magnetosphere and diffuse aurora // Nature Communications. V. 11. 1668. 2020. https://doi.org/10.1038/s41467-020-15506-3
- – Helmboldt J.F., Haiducek J.D., Clarke T.E. The properties and origins of corotating plasmaspheric irregularities as revealed through a new tomographic technique // J. Geophys. Res. V. 125. № 3. 2020. https://doi.org/10.1029/2019JA027483
- – Helmboldt J.F. The properties and origins of corotating plasmaspheric irregularities: Part II—Tomography with compact arrays of GPS receivers // J. Geophys. Res. V. 125. № 6. 2020. https://doi.org/10.1029/2020JA027858
- – Higel B., Wu L. Electron density and plasmapause characteristics at 6.6 RE: a statistical study of the GEOS 2 relaxation sounder data // J. Geophys. Res. V. 89. P. 1583–1601. 1984. https://doi.org/10.1029/JA089iA03p01583
- – Horwitz J.L., Comfort R.H., Chappell C.R. A statistical characterization of plasmasphere density structure and boundary location // J. Geophys. Res. V. 95. № A6. P. 7937–7947. 1990. https://doi.org/10.1029/JA095iA06p07937
- – Kotova G., Bezrukikh V., Verigin M., Šmilauer J. In situ observations of low-density regions inside the plasmasphere // Earth, Planets and Space. V. 56. P. 989–996. 2004. https://doi.org/10.1186/BF03351796
- – Kotova G., Bezrukikh V., Verigin M. The effect of the Earth’s optical shadow on thermal plasma measurements in the plasmasphere // J. Atm. Solar-Terr. Phys. V. 120. P. 9–14. 2014. https://doi.org/10.1016/j.jastp.2014.08.013
- – Kotova G., Verigin M., Lemaire J., Pierrard V., Bezrukikh V., Smilauer J. Experimental study of the plasmasphere boundary layer using MAGION 5 data // J. Geophys. Res. V. 123. P. 1251–1259. 2018. https://doi.org/10.1002/2017JA024590
- – Lemaire J.F., Gringauz K.I., with contributions from Carpenter D.L. and Bassolo V. The Earth’s Plasmasphere, 350 pp., Cambridge Univ. Press, New York. 1998. https://doi.org/10.1017/CBO9780511600098.
- – Lemaire J.F. Hydrostatic equilibrium and convective stability in the plasmasphere // J. Atm. Solar-Terr. Phys. V. 61. № 11. P. 861–878. 1999. https://doi.org/10.1016/S1364-6826(99)00044-9
- – Newcomb W.A. Convective instability induced by gravity in a plasma with a frozen-in magnetic field // Physics of Fluids. V. 4. P. 391–396. 1961. https://doi.org/10.1063/1.1706342
- – Sandel B.R., Goldstein J., Gallagher D.L., Spasojevic M. Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere // Space Sci. Rev. V. 109. P. 25–46. 2003. https://doi.org/10.1007/978-94-010-0027-7_2
- – Verbanac G., Pierrard V., Bandic M., Darrouzet F., Rauch J.-L., Décréau P. The relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011 // Ann. Geophys. V. 33. P. 1271–1283. 2015. https://doi.org/10.5194/angeo-33-1271-2015
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








