Особенности переноса ДНК-маркеров генов дикого аллотетраплоидного вида картофеля Solanum stoloniferum в геном культурного картофеля в зависимости от их субгеномной принадлежности и применяемых схем интрогрессии
- Авторы: Ермишин А.П.1, Левый А.В.1, Агеева А.С.1, Воронкова Е.В.1, Лукша В.И.1, Гукасян О.Н.1, Жарич В.М.1
-
Учреждения:
- Институт генетики и цитологии Национальной академии наук Беларуси
- Выпуск: Том 59, № 7 (2023)
- Страницы: 741-754
- Раздел: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://rjpbr.com/0016-6758/article/view/666828
- DOI: https://doi.org/10.31857/S0016675823070056
- EDN: https://elibrary.ru/QKFUVA
- ID: 666828
Цитировать
Аннотация
Одним из факторов, затрудняющих использование дикого аллотетраплоидного вида картофеля Solanum stoloniferum Schltdl et Bouchet (геном ААВВ) в селекции, являются геномные различия с S. tuberosum L. (АААА). Однако в литературе практически отсутствует информация о том, какие ценные гены этого дикого вида расположены на субгеноме В и каким образом происходит их перенос в геном S. tuberosum. Целью настоящей работы было определение субгеномной принадлежности ряда генов S. stoloniferum с использованием оригинального подхода, основанного на различиях в наследовании маркеров этих генов первым поколением беккросса (ВС1) культурным картофелем удвоенных триплоидных гибридов (6x, AAAABB) в зависимости от их расположения на субгеноме А или В, анализ наследования маркеров в ВС2 и ВС3 в рамках четырех схем интрогрессии и маркер-опосредованной селекции по гену устойчивости к фитофторозу Rpi-sto1. Маркеры генов устойчивости к фитофторозу Rpi-sto1, R3b, R2, генов устойчивости к PVY Rysto, Ryadg, гена устойчивости к раку картофеля Sen2 локализованы на субгеноме В, а гена Rychc устойчивости к PVY – на субгеноме А S. stoloniferum. Наблюдали спорадическое появление гибридов BC1 без маркеров, что можно объяснить редкими случаями рекомбинации гомеологичных хромосом субгеномов А и В. Наследование маркеров в ВС2 (близкое к 1 : 1) в целом соответствовало ожидаемому при случайной передаче потомству BC2 отдельных хромосом субгенома В. В ВС3 отобрано несколько перспективных для селекции гибридов с маркером гена Rpi-sto1.
Ключевые слова
Об авторах
А. П. Ермишин
Институт генетики и цитологии Национальной академии наук Беларуси
Автор, ответственный за переписку.
Email: ermishin@igc.by
Беларусь, 220072, Минск
А. В. Левый
Институт генетики и цитологии Национальной академии наук Беларуси
Email: ermishin@igc.by
Беларусь, 220072, Минск
А. С. Агеева
Институт генетики и цитологии Национальной академии наук Беларуси
Email: ermishin@igc.by
Беларусь, 220072, Минск
Е. В. Воронкова
Институт генетики и цитологии Национальной академии наук Беларуси
Email: ermishin@igc.by
Беларусь, 220072, Минск
В. И. Лукша
Институт генетики и цитологии Национальной академии наук Беларуси
Email: ermishin@igc.by
Беларусь, 220072, Минск
О. Н. Гукасян
Институт генетики и цитологии Национальной академии наук Беларуси
Email: ermishin@igc.by
Беларусь, 220072, Минск
В. М. Жарич
Институт генетики и цитологии Национальной академии наук Беларуси
Email: ermishin@igc.by
Беларусь, 220072, Минск
Список литературы
- Solomon-Blackburn R.M., Barker H. A review of host major-gene resistance to potato viruses X, Y, A and V in potato: Genes, genetics and mapped location // Heredity. 2001. V. 86. P. 8–16. https://doi.org/10.1046/j.1365-2540.2001.00798.x
- Zimnoch-Guzowska E., Yin Z., Flis B. Sources and effectiveness of potato PVY resistance in IHAR’s breeding research // Am. J. Potato Res. 2013. V. 90. P. 21–27. https://doi.org/10.1007/s12230-012-9289-5
- Wang M., Allefs S., van den Berg R.G. et al. Allele mining in Solanum: Conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum // Theor. Appl. Genet. 2008. V. 116. P. 933–943.https://doi.org/10.1007/s00122-008-0725-3
- Ross H. Potato breeding. Problems and perspectives // Adv. Plant Breed. (Suppl.). 1986. V. 13. 132 p.
- Ortiz R. Potato breeding via ploidy manipulations // Plant Breed. Reviews. 1998. V. 16. P. 15–86. https://doi.org/10.1002/9780470650110.ch2
- Jackson S.A., Hanneman R.E., Jr. Crossability between cultivated and wild tuber- and non-tuber-bearing Solanum // Euphytica. 1999. V. 109. P. 51–67. https://doi.org/10.1023/A:1003710817938
- Hayes R.J., Dinu I.I., Thill C.A. Unilateral and bilateral hybridization barriers in inter-series crosses of 4x 2EBN Solanum stoloniferum, S. pinnatisectum, S. cardiophyllum and 2x 2EBN S. tuberosum haploids and haploid-species hybrids // Sex. Plant Reprod. 2005. V. 17. P. 303–311. https://doi.org/10.1007/s00497-005-0244-1
- Lössl A., Götz M., Braun A., Wenzel G. Molecular markers for cytoplasm in potato: Male sterility and contribution of different plastid-mitochondrial configurations to starch production // Euphytica. 2000. V. 116. P. 221–230. https://doi.org/10.1023/A:1004039320227
- Song Ye-Su, Schwarzfischer A. Development of STS markers for selection of extreme resistance (Rysto) to PVY and maternal pedigree analysis of extremely resistant cultivars // Am. J. Potato Res. 2008. V. 85. P. 159–170. https://doi.org/10.1007/s12230-008-9044-0
- Анисимова И.Н., Гавриленко Т.А. Цитоплазматическая мужская стерильность и перспективы ее использования в селекционно-генетических исследованиях и семеноводстве картофеля // Вавил. журн. генетики и селекции. 2017. Т. 21. № 1. С. 83–95. https://doi.org/10.18699/VJ17.226
- Spooner D.M., Rodriguez F., Polgar Z. et al. Genomic origins of potato polyploids: GBSSI gene sequencing data // Plant Genome. Suppl. Crop Sci. 2008. V. 48. (Suppl. 1). P. S27–S36.https://doi.org/10.2135/cropsci2007.09.0504tpg
- Marks G.E. A polyhaploid plant of Solanum polytrichon Rydb. // Nature (London). 1955. V. 175. P. 469. https://doi.org/10.1038/175469a0
- Magoon M.L., Hougas R.W., Cooper D.C. Chromosome pairing at different ploidy levels in the tuber bearing Solanums // J. Genet. 1960. V. 57. P. 279–298. https:// www.ias.ac.in/article/fulltext/jgen/057/02-03/0279-0297
- Dvorak J. Evidence for genetic suppression of heterogenetic chromosome pairing in polyploidy species of Solanum, sect. Petota // Canadian J. Genet. Cytol. 1983. V. 25. P. 530–538. https://doi.org/10.1139/g83-080
- Hermsen J.G.Th., Ramanna M.S. Barriers to hybridization of Solanum bulbocastanum Dun. and S. verrucosum Schlechtd. and structural hybridity in their F1 plants // Euphytica. 1976. V. 25. P. 1–10. https://doi.org/10.1007/BF00041523
- Hermsen J.G.Th., Ramanna M.S. Meiosis in different F1-hybrids of Solanum acaule BITT × S. bulbocastanum Dun. and its bearing on genome relationship, fertility and breeding behavior // Euphytica. 1969. V. 18. P. 27–35. https://doi.org/10.1007/bf00021979
- Ramanna M.S., Hermsen J.G.Th. Somatic chromosome elimination and meiotic chromosome pairing in the triple hybrid 6x-(Solanum acaule × S. bulbocastanum) × × 2x-S. phureja // Euphytica. 1971. V. 20. P. 470–481. https://doi.org/10.1007/BF00034200
- Gavrilenko T.A., Pendinen G.I., Yermishin A.P. GISH analysis of the introgression of the B subgenome genetic material of wild allotetraploid species Solanum stoloniferum into backcrossing progenies with potato // Agronomy. 2022. V. 12. Pub. 787. https://doi.org/10.3390/agronomy12040787
- Kikuchi S., Ishii H., Hosaka K., Sanetomo R. Behavior of chromosomes from the Mexican wild diploid species Solanum pinnatisectum in the interspecific hybrid with cultivated potato and its backcross progenies // Euphytica. 2022. V. 218. Pub. 56. https://doi.org/10.1007/s10681-022-03003-1
- Adiwilaga K.D., Brown C.R. Use of 2n pollen-producing triploid hybrids to introduce tetraploid Mexican wild species germplasm to cultivated tetraploid potato gene pool // Theor. Appl. Genet. 1991. V. 81. P. 645–652. https://doi.org/10.1007/BF00226732
- Bamberg J.B., Hanneman R.E., Jr., Palta J.P., Harbage J.F. Using disomic 4x (2EBN) potato species germplasm via bridge species Solanum commersonii // Genome. 1994. V. 37. P. 866–870. https://doi.org/10.1139/g94-122
- Watanabe K., Arbizu C., Schmiediche P. Potato germplasm enhancement with disomic tetraploid Solanum acaule. I. Efficiency of introgression // Genome. 1992. V. 35. P. 53–57. https://doi.org/10.1139/g92-009
- Lamm R. Investigation of some tuber-bearing Solanum hybrids // Hereditas. 1953. V. 39. P. 97–112. https://doi.org/10.111/j1601-5223.1953.tb03404.x
- Swaminathan M.S. Notes on induced polyploids in the tuber-bearing Solanum species and their crossability with S. tuberosum // Am. Potato J. 1951. V. 28. P. 472–489. https://doi.org/10.1007/BF02854980
- von Wangenheim K.H. Zur Ursache der Kreuzungsschwierigkeiten zwischen Solanum tuberosum L. und S. acaule BITT. bzw. S. stoloniferum Schldtl. & Bouchet // Zeitschrift fur Pflanzenzuchtung. 1954. V. 34. P. 7–48.
- Лебедева Н.А. Изменение свойств и признаков картофеля под влиянием полиплоидии и использование экспериментальной полиплоидии в селекции картофеля: Автореф. дис. … д-ра биол. наук. Киев: Акад. наук Украинской ССР, 1966. 38 с.
- Camadro E.L., Espinillo J.C. Germplasm transfer from the wild tetraploid species Solanum acaule Bitt. to the cultivated potato S. tuberosum L using 2n eggs // Am. Potato J. 1990. V. 67. P. 737–749. https://doi.org/10.1007/BF03044524
- Watanabe K.N., Orillo M., Vega S. et al. Potato germplasm enhancement with disomic tetraploid Solanum acaule. II. Assesment of breeding value of tetraploid F1 hybrids between tetrasomic tetraploid S. tuberosum and S. acaule // Theor. Appl. Genet. 1994. V. 88. P. 135–140. https://doi.org/10.1007/BF00225888
- Yermishin A.P., Levy A.V., Voronkova E.V. et al. Overcoming unilateral incompatibility in crosses with wild allotetraploid potato species Solanum stoloniferum Schldtl. & Bouchet // Euphytica. 2017. V. 213. Pub. 249. https://doi.org/10.1007/s10681-017-2041-y
- Антонова О.Ю., Ермишин А.П., Левый А.В. и др. Разработка хромосом-специфичных ДНК-маркеров для изучения интрогрессивной гибридизации картофеля с диким мексиканским аллотетраплоидным видом Solanum stoloniferum Schldtl. & Bouchet // Биотехнология и селекция растений. 2019. Т. 2. № 4. С. 24–35. https://doi.org/10.30901/2658-6266-2019-4-o3
- Левый А.В. Интрогрессия в Solanum tuberosum L. генов устойчивости к Y-вирусу картофеля и фитофторозу дикого аллотетраплоидного вида S. stoloniferum Schldtl. & Bouchet: Дис. … канд. биол. наук. Минск: Ин-т генетики и цитологии НАН Беларуси, 2019. 151 с.
- Bradshaw J.E., Mackay G.R. Breeding strategies for clonally propagated potatoes // Potato Genetics. Wallingford (UK): CABI, 1994. P. 109–132.
- Ortiz R., Peloquin S.J. Use of 24 chromosome potatoes (diploids and diplandroids) for genetical analysis // Potato Genetics. Wallingford (UK): CABI, 1994. P. 133–154.
- Ермишин А.П., Свиточ О.В., Воронкова Е.В. и др. Определение состава и аллельного состояния генов устойчивости к болезням и вредителям у родительских линий картофеля с помощью ДНК-маркеров // Генетика. 2016. Т. 52. № 5. С. 569–578.
- Полюхович Ю.В., Маханько О.В., Савчук А.В. и др. Создание линий-посредников для преодоления межвидовой несовместимости у картофеля // Изв. НАН Беларуси. Сер. биол. наук. 2010. № 2. С. 51–58.
- Ермишин А.П., Воронкова Е.В. Создание исходного материала для маркер-опосредованной селекции родительских линий картофеля (Solanum tuberosum L.) на диплоидном уровне // С.-хоз. биология. 2017. Т. 52. № 1. С. 50–62. https://doi.org/10.15389/agrobiology.2017.1.50rus
- Kasai K., Morikawa Y., Sorri V.A. et al. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes // Genome. 2000. V. 43. P. 1–8. https://doi.org/10.1139/g99-092
- Mori K., Mukojima N., Nakao T. et al. Germplasm release: Saikai 35, a male and female fertile breeding line carrying Solanum phureja-derived cytoplasm and potato cyst nematode resistance (H1) and potato virus Y resistance (Rychc) genes // Am. J. Potato Res. 2012. V. 89. P. 63–72. https://doi.org/10.1007/s12230-011-9221-4
- Kim H.J., Lee H.R., Jo K.R. et al. Broad spectrum late blight resistance in potato differential set plants MaR8 and Ma R9 is conferred by multiple stacked R genes // Theor. Appl. Genet. 2012. V. 124. P. 923–935. https://doi.org/10.1007/s00122-011-1757-7
- Rietman H., Bijsterbosch G., Cano L.M. et al. Qualitative and quantitative late blight resistance in the potato cultivar Sarpo Mira is determined by the perception of five distinct RXLR effectors // Mol. Plant Microbe Interact. 2012. V. 25. P. 910–919. https://doi.org/10.1094/MPMI-01-12-0010-R
- Plich J., Przetakiewicz J., Śliwka J. et al. Novel gene Sen2 conferring broad-spectrum resistance to Synchytrium endobioticum mapped to potato chromosome XI // Theor. Appl. Genet. 2018. V. 131. P. 2321–2331. https://doi.org/10.1007/s00122-018-3154-y
- Drobyazina P.E., Khavkin E.E. Floricaula/Leafy intron 2-based markers of wild Solanum species and genomes for introgression breeding // PPO-Special Report Schepers H.T.A.M. 2012. V. 15. P. 187–192.
- Milczarek D., Flis B., Przetakiewicz A. Suitability of molecular markers for selection of potatoes resistant to Globodera spp. // Am. J. Potato Res. 2011. V. 88. P. 245–255. https://doi.org/10.1007/s12230-011-9189-0
- Fadina O.A., Beketova M.P., Kuznetsova M.A. et al. Polymorphisms and evolution of Solanum bulbocastanum genes for broad-spectrum resistance to Phytophthora infestans // Russ. J. Plant Physiol. 2019. V. 66. P. 950–957. https://doi.org/10.1134/S1021443719060062
- Vleeshouwers V.G.A.A., Raffaele S., Vossen J. et al. Understanding and exploiting late blight resistance in the age of effectors // Ann. Rev. Phytopathol. 2011. V. 49. P. 25.1–25.25. https://doi.org/10.1146/annurev-phyto-072910-095326
- Champouret N. Functional genomics of Phytophthora infestans effectors and Solanum resistance genes: PhD thesis. Wageningen Univ., 2010. 153 p.
- Ермишин А.П., Левый А.В., Воронкова Е.В. и др. Диплоидные гибриды между диким аллотетраплоидным видом картофеля Solanum stoloniferum Schldtl. & Bouchet и диплоидными клонами культурного картофеля S. tuberosum L., имеющие геном В дикого вида // Докл. НАН Беларуси. 2017. Т. 61. № 5. С. 80–89.
- Sanetomo R., Ono S., Hosaka K. Characterization of crossability in the crosses between Solanum demissum and S. tuberosum, and the F1 and BC1 progenies // Am. J. Potato Res. 2011. V. 88. P. 500–510. https://doi.org/10.1007/s12230-011-9217-0
Дополнительные файлы
