Effect of PNPLA3 (rs738409), UCP2 (rs660339) and HFE (rs1800562, rs1800730, rs1799945) gene polymorphisms on metabolic parameters in patients with nonalcoholic fatty liver disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The risk of development and progression of non-alcoholic fatty liver disease (NAFLD) and associated with it metabolic abnormalities is connected not only with lifestyle, but also with hereditary factors. We studied the relationship of polymorphisms of the PNPLA3 (rs738409), UCP2 (rs660339) and HFE (rs1800562, rs1800730, rs1799945) genes with metabolic changes depending on the clinical form of NAFLD. For this study, 96 patients diagnosed with NAFLD and steatosis and steatohepatitis were examined. An assessment of metabolic parameters and genotyping using hydrolysis probes were performed. Polymorphism rs738409 is associated with the most pronounced changes in metabolic parameters in patients with steatohepatitis, polymorphisms rs1800730 and rs660339 are associated only with dyslipidemia in patients with steatosis and patients with steatohepatitis.

Full Text

Restricted Access

About the authors

O. V. Smirnova

Scientific Research Institute of Medical Problems of the North; Federal University

Author for correspondence.
Email: ovsmirnova71@mail.ru

Federal Research Center «Krasnoyarsk Scientific Center» of the Siberian Branch of the Russian Academy of Sciences

Russian Federation, Krasnoyarsk; Krasnoyarsk

D. V. Lagutinskaya

Scientific Research Institute of Medical Problems of the North

Email: ovsmirnova71@mail.ru

Federal Research Center «Krasnoyarsk Scientific Center» of the Siberian Branch of the Russian Academy of Sciences

Russian Federation, Krasnoyarsk

Е. V. Kasparov

Scientific Research Institute of Medical Problems of the North

Email: ovsmirnova71@mail.ru

Federal Research Center «Krasnoyarsk Scientific Center» of the Siberian Branch of the Russian Academy of Sciences

Russian Federation, Krasnoyarsk

References

  1. Nussbaumerova B. Obesity and dyslipidemia // Current Atherosclerosis Reports. 2023. V. 25. № 12. P. 947–955. https://doi.org/10.1007/s11883-023-01167-2
  2. Friedman S., Neuschwander-Tetri B.A., Rinella M., Sanyal A.J. Mechanisms of NAFLD development and therapeutic strategies // Nat. Medicine. 2018. V. 24. № 7. P. 908–922. https://doi.org/10.1038/s41591-018-0104-9
  3. Byrne C.D., Targher G. NAFLD: А multisystem disease // Hepatology. 2015. V. 62. № 1. P. S47–S64. https://doi.org/10.1016/j.jhep.2014.12.012
  4. Tanase D.M., Gosav E.M., Costea C. et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD) // J. Diabetes Res. 2020. V. 2020. https://doi.org/10.1155/2020/3920196
  5. Watt M.J., Miotto P.M., Nardo W.N., Montgomery M.K. The liver as an endocrine organ–linking NAFLD and insulin resistance // Endocrine Reviews. 2019. V. 40. № 5. P. 1367–1393. https://doi.org/10.1210/er.2019-00034
  6. Younossi Z.M., Koenig A.B., Abdelatif D. et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes // Hepatology. 2016. V. 64. № 1. P. 73–84. https://doi.org/10.1002/hep.28431
  7. Yuan S., Chen J., Xue L. et al. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study // Europ. J. Epidemiology. 2022. V. 37. № 7. P. 723–733. https://doi.org/ 10.1007/s10654-022-00868-3
  8. Raza S., Rajak S., Upadhyay A. et al. Current treatment paradigms and emerging therapies for NAFLD/NASH // Front. in Bioscience-Landmark. 2021. V. 26. № 2. P. 206–237. https://doi.org/10.2741/4892
  9. Romeo S., Kozlitina J., Xing C. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease // Nat. Genet. 2008. V. 40. № 12. P. 1461–1465. https://doi.org/10.1038/ng.257
  10. Sookoian S., Castano G., Burgueno A. et al. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity // J. Lipid Res. 2009. V. 50. № 10. P. 2111–2116. https://doi.org/10.1194/jlr.P900013-JLR200
  11. Kienesberg P., Oberer M., Lass A., Zechner R. Mammalian patatin domain containing proteins: A family with diverse lipolytic activities involved in multiple biological functions // J. Lipid Res. 2009. V. 50. P. S63–S68. https://doi.org/10.1194/jlr.R800082-JLR200
  12. Basantani M., Sitnick M., Cai L. et al. PNPLA3/adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome // J. Lipid нздравом России). Режим доступа: https://www.consultant.ru/document/cons_doc_LAW_431527/
  13. Brondani L., Assmanm T., de Souza B. et al. Meta-analysis reveals the association of common variants in the uncoupling protein (UCP) 1–3 genes with body mass index variability // PLoS One. 2014. V. 9. № 5. https://doi.org/10.1371/journal.pone.0096411
  14. De Souza B., Brondani L., Boucas A. et al. Associations between UCP1 –3826A/G, UCP2 –866G/A, Ala55Val and Ins/Del, and UCP3 –55C/T polymorphisms and susceptibility to type 2 diabetes mellitus: case-control study and meta-analysis // PLoS One. 2013. V. 8. № 1. https://doi.org/10.1371/journal.pone.0054259
  15. Ye Q., Qian X., Yin W.L. et al. Association between the HFE C282Y, H63D polymorphisms and the risks of non-alcoholic fatty liver disease, liver cirrhosis and hepatocellular carcinoma: Аn updated systematic review and meta-analysis of 5,758 cases and 14,741 controls // PLoS One. 2016. V. 11. № 9. https://doi.org/10.1371/journal.pone.0163423
  16. Mann J.P., Pietzner M., Wittemans L.B. et al. Insights into genetic variants associated with NASH-fibrosis from metabolite profiling // Hum. Mol. Genet. 2020. V. 29. № 20. P. 3451–3463. https://doi.org/10.1093/hmg/ddaa162
  17. Клинические рекомендации «Неалкогольная жировая болезнь печени у взрослых» (одобрены Минздравом России). Режим доступа: https://www.consultant.ru/document/cons_doc_LAW_431527/
  18. Barton J.C., Edwards C.Q., Acton R.T. HFE gene: Structure, function, mutations, and associated iron abnormalities // Gene. 2015. V. 574. № 2. P. 179–192. https://doi.org/10.1016/j.gene.2015.10.009
  19. Stanzione R., Forte M., Cotugno M. Uncoupling protein 2 as a pathogenic determinant and therapeutic target in cardiovascular and metabolic diseases // Curr. Neuropharmacology. 2022. V. 20. № 4. P. 662–674. https://doi.org/10.2174/1570159X19666210421094204
  20. Pirazzi C., Valenti L., Motta B.M. et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells // Hum. Mol. Genet. 2014. V. 23. № 15. P. 4077–4085. https://doi.org/10.1093/hmg/ddu121
  21. Li J.F., Zheng E.Q., Xie M. PNPLA3 association between rs738409 polymorphism in patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene and hepatocellular carcinoma susceptibility: Evidence from case-control studies // Gene. 2014. V. 658. P. 143–148. https://doi.org/10.1016/j.gene.2018.11.012
  22. Katsarou M.S., Papasavva M., Latsi R., Drakoulis N. Hemochromatosis: Hereditary hemochromatosis and HFE gene // Vitamins and Hormones. 2019. V. 110. P. 201–222. https://doi.org/10.1016/bs.vh.2019.01.010
  23. Tan T., Crawford D., Jaskowski L. et al. Altered lipid metabolism in HFE-knockout mice promotes severe NAFLD and early fibrosis // Am. J. Physiology-Gastrointestinal and Liver Physiology. 2011. V. 301. № 5. P. G865–G876. https://doi.org/10.1152/ajpgi.00150.2011
  24. Surniyantoro H., Sadewa A., Hastuti P. et al. Uncoupling protein 2 (UCP2) as genetic risk factor for obesity in Indonesia is different in gender stratification // Kobe J. Med. Sci. 2018. V. 64. № 2. P. E64–E72.
  25. Karamfilova V., Gateva A., Assyov Y. et al. PNPLA3 I148M polymorphism in patients with nonalcoholic fatty liver disease, obesity and prediabetes // J. Gastrointestinal and Liver Diseases. 2019. V. 28. № 4. P. 433–438. https://doi.org/10.15403/jgld-506
  26. Luukkonen P., Qadri S., Lehtimaki T. et al. The PNPLA3-I148M variant confers an antiatherogenic lipid profile in insulin-resistant patients // J. Gastrointestinal and Liver Diseases. 2021. V. 106. № 1. P. e300–e315. https://doi.org/10.1210/clinem/dgaa729
  27. Мехтиев С.Н., Берко О.М., Сидоренко Д.В. и др. Распространенность и лабораторные особенности полиморфизмов гена PNPLA3 у пациентов с НЖБП // Рус. мед. журн. 2023. № 10. С. 60–67.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences