Анализ идентичных районов гомозиготности в геноме кур яичного направления продуктивности и кур декоративных пород
- Авторы: Смарагдов М.Г.1, Дементьева Н.В.1
-
Учреждения:
- Федеральный исследовательский центр животноводства – ВИЖ им. акад. Л.К. Эрнста
- Выпуск: Том 61, № 4 (2025)
- Страницы: 41-54
- Раздел: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://rjpbr.com/0016-6758/article/view/682202
- DOI: https://doi.org/10.31857/S0016675825040054
- EDN: https://elibrary.ru/UAWIOL
- ID: 682202
Цитировать
Аннотация
Искусственный и естественный отбор значительно увеличили фенотипическую и генетическую дифференциацию пород кур. Адаптация к условиям окружающей среды, включая акклиматизацию к суровому климату, оставила «следы» отбора в архитектуре генома многих пород. Поэтому мониторинг генетической изменчивости малочисленных пород кур является важной частью программ разведения и сохранения популяций домашней птицы. На основе результатов генотипирования пород кур с помощью чипа Illumina 60K Single Nucleotide Polymorphism (SNP) был проведен биоинформационный анализ кур яичного направления продуктивности и декоративных пород. Прогоны гомозиготности (ROH) были исследованы у яичных пород – чешской золотистой (ЧЗ), леггорн светло-коричневой (итальянская куропатчатая) (ИК) и декоративных пород – голландской белохохлой черной (ГБ) и гамбургской пятнистой карликовой (ГПК). Среднее число ROH в хромосомах кур варьировало от 200 ± 6 в ГБ до 287 ± 5 в ИК, а коэффициент инбридинга был от 0.29 ± 0.04 в ГБ до 0.50 ± 0.013 в ГПК. Среди изученных пород кур из 40 идентифицированных ROH-островков восемь идентичных островков были обнаружены у двух или трех пород кур. Эти ROH-островки были расположены на GGA1, GGA2, GGA7, GGA11 и GGA25. Гены в ROH-островках были ассоциированы с массой цыпленка, жировым обменом, потреблением корма, весом яичного желтка, расклевыванием перьев и молекулярными процессами, участвующими в репликации ДНК и процессинге мРНК. Феномен идентичных ROH-островков у разных пород обсуждается в контексте селекции.
Ключевые слова
Полный текст

Об авторах
М. Г. Смарагдов
Федеральный исследовательский центр животноводства – ВИЖ им. акад. Л.К. Эрнста
Автор, ответственный за переписку.
Email: mik7252@yandex.ru
Всероссийский научно-исследовательский институт генетики и разведения сельскохозяйственных животных
Россия, Санкт-Петербург, ПушкинН. В. Дементьева
Федеральный исследовательский центр животноводства – ВИЖ им. акад. Л.К. Эрнста
Email: mik7252@yandex.ru
Всероссийский научно-исследовательский институт генетики и разведения сельскохозяйственных животных
Россия, Санкт-Петербург, ПушкинСписок литературы
- Chen L., Wang X., Cheng D. et al. Population genetic analyses of seven Chinese indigenous chicken breeds in a context of global breeds // Animal Genetics. 2019. V. 50. P. 82–86. https://doi.org/10.1111/age.12732
- Dementieva N.V., Shcherbakov Y.S., Stanishevskaya O.I. et al. Large-scale genome-wide SNP analysis reveals the rugged (and ragged) landscape of global ancestry phylogeny and demographic history in chicken breeds // J. Zhejiang Univ. Science B. 2024. V. 25. № 4. P. 324–340. https://doi.org/10.1631/jzus.B2300443
- Romanov M.N., Abdelmanova A.S., Fisinin V.I. et al. Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds // J. Animal Sci. Biotechnology. 2023. V. 14. № 1. P. 35. https://doi.org/10.1186/s40104-022-00813-0
- Li S., Li D., Zhao X. et al. A non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken // PLoS One. 2017. V. 12. № 2. https://doi.org/10.1371/journal.pone.0172211
- Fedorova E.S., Dementieva N.V., Shcherbakov Y.S. et al. Identification of key candidate genes in runs of homozygosity of the genome of two chicken breeds. Associated with cold adaptation // Biology (Basel). 2022. V. 11. № 4. P. 547. https://doi.org/10.3390/biology11040547.
- Restoux G., Rognon X., Vieaud A. et al. Managing genetic diversity in breeding programs of small populations: The case of French local chicken breeds // Genet. Sel. Evolution. 2022. V. 54. P. 56. https://doi.org/10.1186/s12711-022-00746-2
- Abdelmanova A.S., Dotsev A.V., Romanov M.N. et al. Unveiling comparative genomic trajectories of selection and key candidate genes in egg-type Russian white and meat-type white cornish chickens // Biology (Basel). 2021. V. 10. № 9. P. 876. https://doi.org/10.3390/biology10090876
- Howrigan D.P., Simonson M.A., Keller M.C. Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms // BMC Genomics. 2011. V. 12. P. 460. https://doi.org/10.1186/1471-2164-12-460
- Talebi R., Szmatoła T., Mészáros G. et al. Runs of homozygosity in modern chicken revealed by sequence data // G3 (Bethesda). 2020. V. 10. № 12. P. 4615–4623. https://doi.org/10.1534/g3.120.401860
- Yuan J., Li S., Sheng Z. et al. Genome-wide run of homozygosity analysis reveals candidate genomic regions associated with environmental adaptations of Tibetan native chickens // BMC Genomics. 2022. V. 23. № 1. P. 91. https://doi.org/10.1186/s12864-021-08280-z
- Dementieva N.V., Kudinov A.A., Larkina T.A. et al. Genetic variability in local and Imported germplasm chicken populations as revealed by analyzing runs of homozygosity // Animals (Basel). 2020. V. 10. № 10. P. 1887. https://doi.org/10.3390/ani10101887
- Purcell S., Neale B., Todd-Brown K. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses // Am. J. Human Genet. 2007. V. 81. P. 559–575. https://doi.org/10.1086/519795
- Biscarini F., Cozzi P., Gaspa G., Marras G. detectRUNS: An R package to detect runs of homozygosity and heterozygosity in diploid genomes. CRAN (The Compr. R Arch. Network. 2019)
- The Chicken Genome Project currently maintained by the Genome Reference Consortium (GRC). Gallus gallus isolate: RJF #256 | breed: Red Jungle fowl (chicken). Genome assembly GRCg6. Feb 2. 2018. https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_000002315.4/
- Patterson N., Price A.L., Reich D. Population structure and eigenanalysis // PLoS Genetics. 2006. V. 2. P. e190. https://doi.org/10.1371/journal.pgen.0020190
- Smaragdov M.G., Kudinov A.A. Assessing the power of principal components and Wright’s fixation index analyzes applied to reveal the genome-wide genetic differences between herds of Holstein cows // BMC Genetics. 2020. V. 21. P. 47. https://doi.org/10.1186/s12863-020-00848-0
- Cunningham F., Allen J.E., Allen J. et al. Ensembl. // Nucl. Acids Res. 2022. V. 50. № 1. P. D988–D995. https://doi.org/10.1093/nar/gkab1049
- Sherman B.T., Hao M., Qiu. J. et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update) // Nucl. Acids Res. 2022. V. 50 (W1). P. W216–W221. https://doi.org/10.1093/nar/gkac194
- Fu W., Wang R., Xu N. et al. Galbase: A comprehensive repository for integrating chicken multi-omics data // BMC Genomics. 2022. V. 23. № 1. P. 364. https://doi.org/10.1186/s12864-022-08598-2
- Ma S., Li P., Liu H. et al. Genome-wide association analysis of the primary feather growth traits of duck: Identification of potential Loci for growth regulation // Poultry Science. 2023. V. 102. № 1. https://doi.org/10.1016/j.psj.2022.102243
- Guo X., Hu W., Gao Z. et al. Identification of PLOD3 and LRRN3 as potential biomarkers for Parkinson's disease based on integrative analysis // NPJ Parkinsons Dis. 2023. V. 9. № 1. P. 82. https://doi.org/10.1038/s41531-023-00527-8
- Zhu Y., Wang Y., Wang Y. et al. Transcriptome analysis reveals steroid hormones biosynthesis pathway involved in abdominal fat deposition in broilers // J. Integrative Agriculture. 2024. V. 23. № 9. P. 3118–3128. https://doi.org/10.1016/j.jia.2023.04.015
- Bai H., Sun Y., Liu N. et al. Single SNP- and pathway-based genome-wide association studies for beak deformity in chickens using high-density 600K SNP arrays // BMC Genomics. 2018. V. 19. P. 501. https://doi.org/10.1186/s12864-018-4882-8
- Zhang J., Wang Q., Li Q. et al. Comparative functional analysis of macrophage phagocytosis in Dagu chickens and Wenchang chickens // Frontiers Immunology. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1064461
- Rubin C.J., Zody M.C., Eriksson J. et al. Whole-genome resequencing reveals loci under selection during chicken domestication // Nature. 2010. V. 464. № 7288. P. 587–591. https://doi.org/10.1038/nature08832
- Al Dow M., Silveira M.A.D., Poliquin A. et al. Control of adipogenic commitment by a STAT3-VSTM2A axis // Am. J. Physiology, Endocrinology and Metabolism. 2021. V. 320. № 2. P. E259–E269. https://doi.org/10.1152/ajpendo.00314.2020
- Qanbari S., Rubin C.J., Maqbool K. et al. Genetics of adaptation in modern chicken // PLoS Genetics. 2019. V. 15. № 4. https://doi.org/10.1371/journal.pgen.1007989
- Gu X., Feng C., Ma L. et al. Genome-wide association study of body weight in chicken F2 resource population // PloS One. 2011. V. 6. № 7. https://doi.org/10.1371/journal.pone.0021872
- Elferink M.G., Megens H.J., Vereijken A. et al. Signatures of selection in the genomes of commercial and non-commercial chicken breeds // PloS One. 2012. V. 7. № 2. https://doi.org/10.1371/journal.pone.0032720
- Wang M.S., Huo Y.X., Li Y. et al. Comparative population genomics reveals genetic basis underlying body size of domestic chickens // J. Mol. Cell Biology. 2016. V. 8. № 6. P. 542–552. https://doi.org/10.1093/jmcb/mjw044
- Kudinov A.A., Dementieva N.V., Mitrofanova O.V. et al. Genome-wide association studies targeting the yield of extraembryonic fluid and production traits in Russian White chickens // BMC Genomics. 2019. V. 20. P. 270. https://doi.org/10.1186/s12864-019-5605-5
- Habimana R., Ngeno K., Okeno T.O. et al. Genome-wide association study of growth performance and immune response to newcastle disease virus of indigenous chicken in rwanda // Frontiers in Genet. 2021. V. 12. https://doi.org/10.3389/fgene.2021.723980
- Wang Y.-M., Ye L.-Q., Wang M.-S. et al. Unveiling the functional and evolutionary landscape of RNA editing in chicken using genomics and transcriptomics // Zool. Research. 2022. V. 43. № 6. P. 1011–1022. https://doi.org/10.24272/j.issn.2095-8137.2022.331
- Zhang M., Li D., Zhai Y. et al. The landscape of DNA methylation associated with the transcriptomic network of intramuscular adipocytes generates insight into intramuscular fat deposition in chicken // Frontiers Cell Development Biol. 2020. V. 8. P. 206. https://doi.org/10.3389/fcell.2020.00206
- Ma X., Sun J., Zhu S. et al. MiRNAs and mRNAs analysis during abdominal preadipocyte differentiation in chickens // Animals. 2020. V. 10. № 3. P. 468. https://doi.org/10.3390/ani10030468
- Shi C., Pang L., Ji C. et al. Obesity-associated miR-148a is regulated by cytokines and adipokines via a transcriptional mechanism // Mol. Med. Reports. 2016. V. 14. № 6. P. 5707–5712. https://doi.org/10.3892/mmr.2016.5940
- Zhang M., Yan F.B., Li F. et al. Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens // Scientific Reports. 2017. V. 7. https://doi.org/10.1038/srep45564
- Shah T.M., Patel N.V., Patel A.B. et al. A genome-wide approach to screen for genetic variants in broilers (Gallus gallus) with divergent feed conversion ratio // Mol. Genet. and Genomics. 2016. V. 291. № 4. P. 1715–1725. https://doi.org/10.1007/s00438-016-1213-0
- Izadnia H.R., Tahmoorespur M., Bakhtiarizadeh M.R. et al. Gene expression profile analysis of residual feed intake for Isfahan native chickens using RNA-SEQ data // Ital. J. Animal Science. 2019. V. 18. № 1. P. 246–260. https://doi.org/10.1080/1828051X.2018.1507625
- Liu L., Liu X., Cui H. et al. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens // BMC Genomics. 2019. V. 20. P. 863. https://doi.org/10.1186/s12864-019-6221-0
- Schokker D. Chicken intestinal development in health and disease: Transcriptomic and modeling approaches: PhD thesis. Wageningen Univ. Netherlands. 2012.
- Rauch A., Thiel C.T., Schindler D. et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism // Science. 2008. V. 319. № 5864. P. 816–819. https://doi.org/10.1126/science.1151174
- Wang Y., Dantas T.J., Lalor P. et al. Promoter hijack reveals pericentrin functions in mitosis and the DNA damage response // Cell Cycle (Georgetown. Tex.). 2013. V. 12. № 4. P. 635–646. https://doi.org/10.4161/cc.23516
- Ye F., Wang Y., He Q. et al. Screening of immune biomarkers in different breeds of chickens infected with J subgroup of avian leukemia virus by proteomic // Virulence. 2020. V. 11. № 1. P. 1158–1176. https://doi.org/10.1080/21505594.2020.1809323
- Jahejo A.R., Zhang D., Niu S. et al. Transcriptome-based screening of intracellular pathways and angiogenesis related genes at different stages of thiram induced tibial lesions in broiler chickens // BMC Genomics. 2020. V. 21. P. 50. https://doi.org/10.1186/s12864-020-6456-9
- Schilling M.A., Katani R., Memari S. et al. Transcriptional innate immune response of the developing chicken embryo to newcastle disease virus infection // Frontiers in Genet. 2018. V. 9. P. 61. https://doi.org/10.3389/fgene.2018.00061
- Wang Y., Yang F., Yin H. et al. Chicken interferon regulatory factor 7 (IRF7) can control ALV-J virus infection by triggering type I interferon production through affecting genes related with innate immune signaling pathway // Developmental & Comparative Immunology. 2021. V. 119. https://doi.org/10.1016/j.dci.2021.104026
- Truong A.D., Rengaraj D., Hong Y. et al. Analysis of JAK-STAT signaling pathway genes and their microRNAs in the intestinal mucosa of genetically disparate chicken lines induced with necrotic enteritis // Veterin. Immunology and Immunopathology. 2017. V. 187. P. 1–9. https://doi.org/10.1016/j.vetimm.2017.03.001
- Huang X., Zhang J., Liu Z. et al. Genome-wide analysis of differentially expressed mRNAs, lncRNAs, and circRNAs in chicken bursae of Fabricius during infection with very virulent infectious bursal disease virus // BMC Genomics. 2020. V. 21. P. 724. https://doi.org/10.1186/s12864-020-07129-1
- Li F., Han H., Lei Q. et al. Genome-wide association study of body weight in Wenshang Barred chicken based on the SLAF-seq technology // J. Appl. Genetics. 2018. V. 59. P. 305–312. https://doi.org/10.1007/s13353-018-0452-7
- Jia X., Nie Q., Zhang X. et al. Novel microRNA involved in host response to avian pathogenic Escherichia coli identified by deep sequencing and integration analysis // Infection and Immunity. 2016. V. 85. № 1. https://doi.org/10.1128/IAI.00688-16
- Li F., Yan C., Yao Y. et al. Transcription factor SATB2 regulates skeletal muscle cell proliferation and migration via HDAC4 in pigs // Genes. 2024. V. 15. № 1. P. 65. https://doi.org/10.3390/genes15010065
- Li S., Li J., Liu J. et al. Regulatory variants at 2q33.1 confer schizophrenia risk by modulating distal gene TYW5 expression // Brain. 2022. V. 145. № 2. P. 770–786. https://doi.org/10.1093/brain/awab357
- Falker-Gieske C., Iffland H., Preuß S. et al. Meta-analyses of genome wide association studies in lines of laying hens divergently selected for feather pecking using imputed sequence level genotypes // BMC Genetics. 2020. V. 21. № 1. P. 114. https://doi.org/10.1186/s12863-020-00920-9
- Zhang J., Duan Z., Wang X. et al. Screening and validation of candidate genes involved in the regulation of egg yolk deposition in chicken // Poultry Science. 2021. V. 100. № 6. https://doi.org/10.1016/j.psj.2021.101077
- Luo A., Qiao N., Hu K. et al. BZW1 is a prognostic and immunological biomarker in pancreatic adenocarcinoma // Medicine. 2024. V. 103. № 5. https://doi.org/10.1097/MD.0000000000037092
- Chou H.C. The role of human ORC2 in DNA replication mitosis and organization of the nucleus: A Dissertation The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Molecular and Cellular Biology Stony Brook University. 2021.
- Zu M., Li C., Fang J.-S. et al. Drug discovery of host CLK1 inhibitors for influenza treatment // Molecules. 2015. V. 20. № 11. P. 19735–19747. https://doi.org/10.3390/molecules201119653
- Soler L., Alves S., Brionne A. et al. Protein expression reveals a molecular sexual identity of avian primordial germ cells at pre-gonadal stages // Sci. Reports. 2021. V. 11. P. 19236. https://doi.org/10.1038/s41598-021-98454-2
- Tang Y., Yin L., Liu L. et al. Comparative analysis of different proteins and metabolites in the liver and ovary of local breeds of chicken and commercial chickens in the later laying period // Intern. J. Mol. Sciences. 2023. V. 24. № 18. https://doi.org/10.3390/ijms241814394
- Feng J., Zhu W., Shi H. et al. Analysis of the selection signal of the Tibetan black chicken genome based on whole-genome sequencing // Genes. 2023. V. 14. № 9. P. 1672. https://doi.org/10.3390/genes14091672
- Yin H., Li D., Wang Y., Zhu O. Whole-genome resequencing analysis of Pengxian Yellow Chicken to identify genome-wide SNPs and signatures of selection // Biotechnology. 2019. V. 9. P. 383. https://doi.org/10.1007/s13205-019-1902-6
- Beacon T.H., Davie J.R. Transcriptionally active chromatin-lessons learned from the chicken erythrocyte chromatin fractionation // Cells. 2021. V. 10. № 6. P. 1354. https://doi.org/10.3390/cells10061354
- Falker-Gieske C., Bennewitz J., Tetens J. The light response in chickens divergently selected for feather pecking behavior reveals mechanistic insights towards psychiatric disorders // Mol. Biol. Reports. 2022. V. 49. № 2. P. 1649–1654. https://doi.org/10.1007/s11033-021-07111-4
- Li H., Ding Z., Fang Z.-Y. et al. Conserved intronic secondary structures with concealed branch sites regulate alternative splicing of poison exons // Nucl. Acids Res. 2024. V. 52. № 10. P. 6002–6016. https://doi.org/10.1093/nar/gkae185
- Talbot C.J., Kubilus J.K. Developmental analysis of SV2 in the embryonic chicken corneal epithelium // Experimental Eye Res. 2018. V. 172. P. 137–143. https://doi.org/10.1016/j.exer.2018.04.002
- Douaud M., Feve K., Pituello F. et al. Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model // PLoS One. 2011. V. 6. № 10. https://doi.org/10.1371/journal.pone.0026932
- Brugaletta G., Greene E., Ramser A. et al. Effect of cyclic heat stress on hypothalamic oxygen homeostasis and inflammatory state in the jungle fowl and three broiler-based research lines // Frontiers Veterinary Sci. 2022. V. 9. https://doi.org/10.3389/fvets.2022.905225
- Moore K.S., Moore R., Fulmer D.B. et al. DCHS1. Lix1L and the septin cytoskeleton: Molecular and developmental etiology of mitral valve prolapse // J. Cardiovascular Development and Disease. 2022. V. 9. № 2. P. 62. https://doi.org/10.3390/jcdd9020062
- Lismont C., Koster J., Provost S. et al. Deciphering the potential involvement of PXMP2 and PEX11B in hydrogen peroxide permeation across the peroxisomal membrane reveals a role for PEX11B in protein sorting // Biochimica et BiophysicaActa (BBA) – Biomembranes. 2019. V. 1861. № 10. https://doi.org/10.1016/j.bbamem.2019.05.013
- Wong C.P., Xu. Z., Hou S. et al. Interplay between zika virus and peroxisomes during infection // Cells. 2019. V. 8. № 7. P. 725. https://doi.org/10.3390/cells8070725
- Wang S., Sun D., Liu C. et al. Weighted gene co-expression network analysis reveals the hub genes associated with pulmonary hypertension // Experim. Biology and Medicine. 2023. V. 248. № 3. P. 217–231. https://doi.org/10.1177/15353702221147557
- Chen X., Bai X., Liu H. et al. Population genomic sequencing delineates global landscape of copy number variations that drive domestication and breed formation of in chicken // Frontiers in Genet. 2022. V. 13. https://doi.org/10.3389/fgene.2022.830393
- Cendron F., Perini F., Mastrangelo S. et al. Genome-wide SNP analysis reveals the population structure and the conservation status of 23 Italian chicken breeds // Animals. 2020. V. 10. № 8. P. 1441. https://doi.org/10.3390/ani10081441
- Strillacci M.G., Vega-Murillo V.E., Román-Ponce S.I. et al. Looking at genetic structure and selection signatures of the Mexican chicken population using single nucleotide polymorphism markers // Poultry Science. 2018. V. 97. № 3. P. 791–802. https://doi.org/10.3382/ps/pex374
- Tan X., Liu L., Dong J. et al. Genome-wide detections for runs of homozygosity and selective signatures reveal novel candidate genes under domestication in chickens // BMC Genomics. 2024. V. 25. № 1. P. 485. https://doi.org/10.1186/s12864-024-10349-4
Дополнительные файлы
