Holstein cattle fertility haplotypes in the Sverdlovsk region

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Recessive genetic mutations can cause various defects in cattle, leading to premature mortality and decreased herd productivity. This article is devoted to the study of the cattle population in the Sverdlovsk region for the presence of haplotypes HH1, HH3, HH4, HH6, HH7, BLAD, BDCMP, DUMPS, BC, FXID, CVM and comparison of the prevalence of these haplotypes in the periods 2008–2012, 2013–2017 and 2018–2023.

Full Text

Restricted Access

About the authors

P. S. Bogatova

Ural State Agricultural University

Author for correspondence.
Email: bogatova.p.s@gmail.com
Russian Federation, Ekaterinburg

O. E. Lihodeevskaya

Ural State Agricultural University

Email: bogatova.p.s@gmail.com
Russian Federation, Ekaterinburg

G. А. Lihodeevskiy

Ural State Agricultural University

Email: bogatova.p.s@gmail.com
Russian Federation, Ekaterinburg

References

  1. Gentry P.A., Crane S., Lotz F. Factor XI (plasma thromboplastin antecedent) deficiency in cattle // Canadian Veter. J. 1975. V. 16. № 6. P. 160.
  2. Gentry P.A., Black W.D. Prevalence and inheritance of factor XI (plasma thromboplastin antecedent) deficiency in cattle // J. Dairy Sci. 1980. V. 63. № 4. P. 616–620. https://doi.org/10.3168/jds.S0022-0302(80)82980-8
  3. Gholap P.N., Kale D.S., Sirothia A.R. Genetic diseases in cattle: A review // Res. J. Animal, Veter. and Fi-shery Sci. 2014. V. 2. № 2. P. 24–33.
  4. Gentile A., Testoni S. Inherited disorders of cattle: А selected review // Slovenian Veter. Res. 2006. V. 43. № 1. P. 17–29.
  5. Healy P.J. Testing for undesirable traits in cattle: Аn Australian perspective // J. Animal Sci. 1996. V. 74. № 4. P. 917–922. https://doi.org/10.2527/1996.744917x
  6. Shuster D.E., Kehrli Jr. M.E., Ackermann M.R. et al. Identification and prevalence of a genetic defect that cau-ses leukocyte adhesion deficiency in Holstein cattle // Proc. Natl Acad. Sci. 1992. V. 89. № 19. P. 9225–9229. https://doi.org/10.1073/ pnas.89.19.9225
  7. Rexroad C.E., Schlapfe J.S., Yang Y. et al. A radiation hybrid map of bovine chromosome one // Animal Genetics. 1999. V. 30. № 5. P. 325–332. https://doi.org/10.1046/j.1365-2052.1999.00504.x
  8. Vătăşescu B.R.A., Manea M.A., Georgescu S.E. et al. Evidence of single point mutation inducing BLAD disease in Romanian Holstein-derived cattle breed // Biotechnol. in Animal Husbandry. 2007. V. 23. № 5–6–1. P. 375–381. https://doi.org/10.2298/BAH0701375V
  9. König F., Zwahlen R., Schaller J. et al. Bovine cardiomyopathy, pathomorphogenic and biochemical studies in yearling steers // Schweizer Archiv für Tierheilkd. 1990. V. 132. P. 439–440.
  10. Adams H.A., Sonstegard T., Van Raden P.M. et al. Identification of a nonsense mutation in APAF1 that is causal for a decrease in reproductive efficiency in dairy cattle // J. Dairy Sci. 2016. V. 99. № 8. P. 6693–6701. https://doi.org/10.3168/jds.2015-10517
  11. De Zio D., Maiani E., Cecconi F. Apaf1 in embryonic development – shaping life by death, and more // Int. J. Develop. Biol. 2015. V. 59. № 1 P. 33–39. https://doi.org/10.1387/ijdb.150047dd
  12. Van Raden P.M., Olson K.M., Null D.J. et al. Harmful recessive effects on fertility detected by absence of homozygous haplotypes // J. Dairy Sci. 2011. V. 94. P. 6153–6161. https://doi.org/10.3168/jds.2011-4624
  13. Pausch H., Schwarzenbacher H., Burgstaller J. et al. Homozygous haplotype deficiency reveals deleterious mutations compromising reproductive and rearing success in cattle // BMC Genomics. 2015. V. 16. № 1. P. 312. https://doi.org/10.1186/s12864-015-1483-7
  14. McClure M.C., Bikhart D., Null D. et al. Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2 and HH3 reveal causative mutation in SMC2 for HH3 // PLoS One. 2014. V. 9. № 3. https://doi.org/10.1371/journal.pone.0092769
  15. Schmiesing J.A., Ball A.R.Jr., Gregson H.C. et al. Identification of two distinct human SMC protein complexes involved in mitotic chromosome dynamics // PNAS USA. 1998. V. 95. № 22. P. 12906–12911. https://doi.org/10.1073/pnas.95.22.12906
  16. Fritz S., Capitan A., Djari A. et al. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2 // PLoS One. 2013. V. 8. № 6. https://doi.org/10.1371/journal.pone.0065550
  17. Ng A., Uribe R.A., Yieh L. et al. Zebrafish mutations in gart and paics identify crucial roles for de novo purine synthesis in vertebrate pigmentation and ocular development // Development. 2009. V. 136. № 15. P. 2601–2611. https://doi.org/10.1242/dev.038315
  18. Fritz S., Hoze C., Rebours E. et al. An initiator codon mutation in SDE2 causes recessive embryonic lethality in Holstein cattle // J. Dairy Sci. 2018. V. 101. № 7. P. 6220–6231. https://doi.org/10.3168/jds.2017-14119
  19. Cole J.B., VanRaden P.M., Null D.J. et al. Haplotype tests for recessive disorders that affect fertility and other traits // USDA Animal Improv. Progr. Res. Rep. Genomics. 2015. P. 9–13.
  20. Hoze C., Escouflaire C., Mesbah-Uddin M. et al. A splice site mutation in CENPU is associated with recessive embryonic lethality in Holstein cattle // J. of Dairy Science. 2020. V. 103. № 1. P. 607–612.
  21. Mohshina H., Gedik Y. Haplotype sourced recessive defects affecting fertility in dairy cattle // Resilient Agriculture with the Help of Crop Diversification. Iksad Publications, 2022. P. 144–180.
  22. Khan M.Y.A., Omar A.I., He Y. et al. Prevalence of nine genetic defects in Chinese Holstein cattle // Veter. Med. and Sci. 2021. V. 7. № 5. P. 1728–1735.
  23. Ковалюк Н.В., Сацук В.Ф., Мачульская Е.В. и др. Новый гаплотип фертильности крупного рогатого скота голштинской породы // Молоч. и мясное скотоводство. 2020. № 4. С. 8–9.
  24. Исупова Ю.В., Дьяконов М.С. Влияние происхождения на воспроизводительные качества коров-первотелок // Иннов. подходы в повышении продуктивности с.-хоз. животных в совр. условиях индустриального производства. 2023. С. 29–35.
  25. Модоров М.В., Мартынов Н.А, Шкуратова И.А. и др. Распространение рецессивных генетических нарушений в уральской популяции крупного рогатого скота // Генетика. 2022. Т. 58. № 4. С. 436–443. https://doi.org/10.1134/S102279542204010X
  26. Schwenger B., Schöber S., Simon D. DUMPS cattle carry a point mutation in the uridine monophosphate synthase gene // Genomics. 1993. V. 16. № 1. P. 241–244. https://doi.org/10.1006/geno.1993.1165
  27. Casas E., Kehrli M.E. Jr. A Review of selected genes with known effects on performance and health of cattle // Front. Vet. Sci. 2016. V. 3. https://doi.org/10.3389/fvets.2016.00113
  28. Citek J., Blahova B. Recessive disorders – a serious health hazard? // J. Appl. Biomed. 2004. V. 2. P. 187–194. https://doi.org/10.32725/jab.2004.022
  29. Dennis J.A., Healy P.J., Beaudet A.L. et al. Molecular definition of bovine argininosuccinate synthetase deficiency // Proc. Natl Acad. Sci. USA. 1989. V. 86. № 20. P. 7947–7951. https://doi.org/10.1073/pnas.86.20.7947
  30. Healy P.J., Harper P.A., Dennis J.A. Bovine citrullinaemia: A clinical, pathological, biochemical and genetic study // Aust. Vet. J. 1990. V. 67. P. 255–258. https://doi.org/10.1111/j.1751-0813.1990.tb07780.x
  31. Богатова П.С., Лиходеевский Г.А., Лиходеевская О.Е. Взаимосвязь геномного и расчетного инбридинга в популяции крупного рогатого скота голштинской породы Свердловской области // Аграрный вестник Урала. 2024. Т. 24. № 9. С. 1158–1171. https://doi.org/10.32417/1997-4868-2024-24-09-1158-1171
  32. Сермягин А.А., Быкова О.А., Лоретц О.Г. и др. Оценка геномной вариабельности продуктивных признаков у животных голштинизированной черно-пестрой породы на основе GWAS-анализа и ROH-паттернов // С.-хоз. биология. 2020. Т. 55. № 2. С. 257–274. https://doi.org/10.15389/agrobiology.2020.2.257rus
  33. Степанов А.В., Быкова О.А., Костюнина О.В., Пильникова С.Д. Определение взаимосвязи генотипов SNP с содержанием жирных кислот различной пространственной конфигурации в молоке коров // Аграрный вестник Урала. 2024. Т. 24. № 1. С. 108–118. https://doi.org/10.32417/1997-4868-2024-24-01-108-118
  34. Столповский Ю.А. Концепция и принципы генетического мониторинга для сохранения in situ пород доместицированных животных // С.-хоз. биология. 2010. Т. 6. С. 3–8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences