Actinobacteria of the genus Streptomyces – a reservoir of aminoglycoside acetyltransferase genes
- Authors: Alekseeva M.G.1, Ratkin A.V.1, Galanova O.O.1, Danilenko V.N.1
-
Affiliations:
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Issue: Vol 61, No 4 (2025)
- Pages: 3-11
- Section: ГЕНЕТИКА МИКРООРГАНИЗМОВ
- URL: https://rjpbr.com/0016-6758/article/view/682195
- DOI: https://doi.org/10.31857/S0016675825040016
- EDN: https://elibrary.ru/UBPYJN
- ID: 682195
Cite item
Abstract
The lack of success in combating the spread of multidrug resistance in pathogenic bacteria forces the scientific community to analyze at a new level of knowledge the mechanisms, routes of spread and natural reservoirs containing bacteria that carry antibiotic resistance genes. The classical mechanism of resistance to aminoglycoside antibiotics (AG) is the modification of AG by enzymes, the most common and clinically significant of which are aminoglycoside acetyltransferases (AAC). In this study, genes encoding enzymes belonging to the AAC(2'), AAC(3), AAC(6') and Eis subfamilies were identified in the sequenced genomes of Streptomyces strains producing AG. Comparative analysis of amino acid sequences showed that the closest homologues for the identified AAC are acetyltransferases from other species of actinobacteria of the genus Streptomyces that do not produce AG (producers of other classes of antibiotics or not producing antibiotics). Comparative phylogenetic analysis of amino acid sequences showed that the enzymes AAC(2′) and Eis are homologues of the acetyltransferases AAC(2′)-I and Eis, previously identified in mycobacteria. The possible role of Eis acetyltransferases in the acetylation of various substrates upon entry into the human body through vesicles containing them is discussed.
Full Text

About the authors
M. G. Alekseeva
Vavilov Institute of General Genetics, Russian Academy of Sciences
Author for correspondence.
Email: Alekseevamg@mail.ru
Russian Federation, 119991, Moscow
A. V. Ratkin
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: Alekseevamg@mail.ru
Russian Federation, 119991, Moscow
O. O. Galanova
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: Alekseevamg@mail.ru
Russian Federation, 119991, Moscow
V. N. Danilenko
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: Alekseevamg@mail.ru
Russian Federation, 119991, Moscow
References
- Serio A.W., Keepers T., Andrews L. et al. Aminoglycoside revival: Review of a historically important class of antimicrobials undergoing rejuvenation // EcoSal. Plus. 2018. V. 8. № 1. https://doi.org/10.1128/ecosalplus.ESP-0002-2018
- Ramirez M.S., Tolmasky M.E. Aminoglycoside modifying enzymes // Drug. Resist. Updat. 2010. V. 13. № 6. P. 151–171. https://doi.org/10.1016/j.drup.2010.08.003
- Webster C.M., Shepherd M. A mini-review: Environmental and metabolic factors affecting aminoglycoside efficacy // World J. Microbiol. Biotechnol. 2022. V. 39. № 1. P. 7. https://doi.org/10.1007/s11274-022-03445-8
- Hotta K., Kondo S. Kanamycin and its derivative, arbekacin: Significance and impact // J. Antibiot. (Tokyo). 2018. V. 71. № 4. P. 417–424. https://doi.org/10.1038/s41429-017-0017-8
- Рудакова Н.Н., Алексеева М.Г., Даниленко В.Н. Гены аминогликозидфосфотрансфераз у почвенных бактерий рода Streptomyces // Успехи совр. биологии. 2020. T. 140. № 3. С. 211–224. https://doi.org/10.31857/S0042132420020064
- Sękowska A. In vitro activity of plazomicin and other aminoglycosides against Klebsiella pneumoniae multidrug-resistant strains // J. Antibiot. (Tokyo). 2024. V. 77. № 8. P. 548–551. https://doi.org/10.1038/s41429-024-00734-2.
- Garneau-Tsodikova S., Labby K.J. Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives // Medchemcomm. 2016. V. 7. № 1. P. 11–27. https://doi.org/10.1039/C5MD00344J
- Pradier L., Bedhomme S. Ecology, more than antibiotics consumption, is the major predictor for the global distribution of aminoglycoside-modifying enzymes // Elife. 2023. V. 12. https://doi.org/10.7554/eLife.77015
- Durand G.A., Raoult D., Dubourg G. Antibiotic discovery: History, methods and perspectives // Int. J. Antimicrob. Agents. 2019. V. 53. № 4. P. 371–382. https://doi.org/10.1016/j.ijantimicag.2018.11.010
- Meyer K.J., Nodwell J.R. Streptomyces extracellular vesicles are a broad and permissive antimicrobial packaging and delivery system // J. Bacteriol. 2024. V. 206. № 3. https://doi.org/10.1128/jb.00325-23
- Ogawara H. Comparison of antibiotic resistance mechanisms in antibiotic-producing and pathogenic bacteria // Molecules. 2019. V. 24. № 19. https://doi.org/10.3390/molecules24193430
- Sanz-García F., Anoz-Carbonell E., Pérez-Herrán E. et al. Mycobacterial aminoglycoside acetyltransferases: A little of drug resistance, and a lot of other roles // Front. Microbiol. 2019. V. 10. https://doi.org/10.3389/fmicb.2019.00046
- Pan Q., Zhao F.L., Ye B.C. Eis, a novel family of arylalkylamine N-acetyltransferase (EC 2.3.1.87) // Sci. Rep. 2018. V. 8. № 1. P. 2435. https://doi.org/10.1038/s41598-018-20802-6
- Darby E.M., Trampari E., Siasat P. et al. Molecular mechanisms of antibiotic resistance revisited // Nat. Rev. Microbiol. 2023. V. 21. № 5. P. 280–295. https://doi.org/10.1038/s41579-022-00820-y
- d'Udekem d'Acoz O., Hue F., Ye T. et al. Dynamics and quantitative contribution of the aminoglycoside 6'-N-acetyltransferase type Ib to amikacin resistance // mSphere. 2024. V. 9. № 3. https://doi.org/10.1128/msphere.00789-23
- Peterson E., Kaur P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens // Front. Microbiol. 2018. V. 9. https://doi.org/10.3389/fmicb.2018.02928
- Hotta K. Basic and applied research on multiple aminoglycoside antibiotic resistance of actinomycetes: an old-timer's recollection // J. Ind. Microbiol. Biotechnol. 2021. V. 48. № 9–10. https://doi.org/10.1093/jimb/kuab059
- Nesme J., Simonet P. The soil resistome: A critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria // Environ Microbiol. 2015. V. 17. № 4. P. 913–930. https://doi.org/10.1111/1462-2920.12631
- Alekseeva M.G., Rudakova N.N., Ratkin A.V. et al. Resistome in Streptomyces rimosus – a reservoir of aminoglycoside antibiotics resistance genes // Biochemistry (Moscow). 2023. V. 88. № 6. P. 723–730. https://doi.org/10.1134/S0006297923060019
- Altschul S.F., Madden T.L., Schaffer A.A. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs // Nucl. Ac. Res. 1997. V. 25. № 17. P. 3389–3402. https://doi.org/10.1093/nar/25.17.3389
- Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11 // Mol. Biol. Evol. 2021. V. 38. № 7. P. 3022–3027. https://doi.org/10.1093/molbev/msab120
- Gil-Gil T., Laborda P., Sanz-García F. et al. Antimicrobial resistance: A multifaceted problem with multipronged solutions // Microbiologyopen. 2019. V. 8. № 11. https://doi.org/10.1002/mbo3.945
- Roohi R., Bano N. Actinobacteria: Smart micro-factories for the health sector // Recent. Pat. Biotechnol. 2024. May 10. https://doi.org/10.2174/0118722083300181240429072502. Epub ahead of print
- Niranjan V., Uttarkar A., Murali K. et al. Mycobacterium time-series genome analysis identifies aac2' as a potential drug target with naloxone showing potential bait drug synergism // Molecules. 2022. V. 27. № 19. https://doi.org/10.3390/molecules27196150
- Shin D.M., Jeon B.Y., Lee H.M. et al. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling // PLoS Pathog. 2010. V. 6. № 12. https://doi.org/10.1371/journal.ppat.1001230
- Duan L., Yi M., Chen J. et al. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3 // Biochem. Biophys. Res. Commun. 2016. V. 473. № 4. P. 1229–1234. https://doi.org/10.1016/j.bbrc.2016.04.045
- Ватлин А.А., Беккер О.Б., Лысенкова Л.Н. и др. Секвенирование и анализ резистома Streptomyces fradiae ATCC19609 с целью разработки тест-системы для скрининга новых антибактериальных веществ // ГЕНЕТИКА. 2016. Т. 52. № 6. С. 723–727.
- Kovtun A.S., Averina O.V., Alekseeva M.G. et al. Antibiotic resistance genes in the gut microbiota of children with autistic spectrum disorder as possible predictors of the disease // Microb. Drug. Resist. 2020. V. 26. № 11. P. 1307–1320. https://doi.org/10.1089/mdr.2019.0325
Supplementary files
