Protein Conformation Changes in 3D Protein Models as a Result of Mutations in Genes Associated with Maize Gynogenesis and Embryogenesis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article presents an analysis of the secondary, tertiary structures and conformation changes in 3D protein models as a result of spontaneous mutations in genes associated with maize (Zea mays L.) gynogenesis and embryogenesis. In particular, it was found that the of four-nucleotides insertion into the Zm_Mtl/Nld/Pla1 gene sequence leads to substitution of two α-helices with an unstructured section and a change in the amino acid composition of one of the β-folds in haploid-inducing (Stock 6, ZMS-8, ZMS-P) maize lines. The SNP at 131 position from the Zm_Dmp7 gene starting codon change the α-helix position in the haploid-inducing line CAU5 change, unlike the ZMS-8 line, which has a similar SNP and two additional amino acid substitutions. On the other hand, the SNP in the Zm_Bbm1 gene from parthenogenetic line AT-4 and Zm_CenH3 gene of haploid-inducing (ZMS-8, ZMS-P), and control (KM) maize lines do not lead to the amino acid substitutions in the corresponding proteins.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Fadeev

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Saratov Scientific Center of the Russian Academy of Sciences

Email: chumakov_m@ibppm.ru
Ресей, Saratov, 410049

Yu. Fadeeva

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Saratov Scientific Center of the Russian Academy of Sciences

Email: chumakov_m@ibppm.ru
Ресей, Saratov, 410049

E. Moiseeva

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Saratov Scientific Center of the Russian Academy of Sciences

Email: chumakov_m@ibppm.ru
Ресей, Saratov, 410049

M. Chumakov

Institute of Biochemistry and Physiology of Plants and Microorganisms of the Saratov Scientific Center of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: chumakov_m@ibppm.ru
Ресей, Saratov, 410049

Әдебиет тізімі

  1. Навашин С.Г. Избранные труды. Т. 1. М.; Л.: Изд-во АН СССР, 1951. 364 с.
  2. Chase S.S. Monoploid frequencies in a commercial double cross hybrid maize, and its component single cross hybrids and inbred lines // Genetics. 1949. V. 34. P. 328–332.
  3. Coe E.H. A line of maize with high haploid frequency // Am. Naturalist. 1959. V. 59. P. 381–382.
  4. Чумаков М.И., Мазилов С.И. Генетический контроль гиногенеза у кукурузы (обзор) // Генетика. 2022. Т. 58. № 4. C. 388–397. https://doi.org/10.31857/S001667582204004X
  5. Kelliher T., Starr D., Richbourg L. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction // Nature. 2017. V. 542. P. 105–109. https://doi.org/10.1038/nature20827
  6. Gilles L.M., Khaled A., Laffaire J.B. et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize // EMBO J. 2017. V. 36. P. 707–717. https://doi.org/10.15252/embj.201796603
  7. Liu C., Li X., Meng D. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize // Mol. Plant. 2017. V. 10. P. 520–522. https://doi.org/10.1016/j.molp.2017.01.011
  8. Gilles L.M., Calhau A.R.M., La Padula V. et al. Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane // J. Cell Biol. 2021. V. 220. https://doi.org/10.1083/jcb.202010077
  9. Takahashi T., Mori T., Ueda K. et al. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants // Development. 2018. V. 45. Iss. 23. https://doi.org/10.1242/dev.170076
  10. Zhong Y., Liu C., Qi X. et al. Mutation of ZmDMP enhances haploid induction in maize // Nature Plants. 2019. V. 5. P. 575–580. https://doi.org/10.1038/s41477-019-0443-7
  11. Burrack L.S., Berman J. Flexibility of centromere and kinetochore structures // Trends in Genetics. 2012. V. 28. № 5. P. 204–212. https://doi.org/10.1016/j.tig.2012.02.003
  12. Hoopes G.M., Hamilton J.P., Wood J.C. et al. An updated gene atlas for maize reveals organ-specific and stress-induced genes // The Plant Journal. 2019. V. 97. № 6. P. 1154–1167. https://doi.org/10.1111/tpj.14184
  13. Stelpflug S.C., Sekhon R.S., Vaillancourt B. et al. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development // The Plant Genome. 2016. V.9 (1). P. 1–16. https://doi.org/10.3835/plantgenome2015.04.0025
  14. Chalyk S.T., Baumann A., Daniel G., Eder J. Aneuploidy as a possible cause of haploid-induction in maize // Maize Genetics Coop. Newsletter. 2003. V. 77. P. 29–30.
  15. Karimi-Ashtiyani R., Ishii T., Niessen M. et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants // Proc. Nat Acad. Sci. USA. 2015. V. 112. № 36. P. 11211–11216. https://doi.org/10.1073/pnas.150433311
  16. Wang S., Jin W., Wang K. Centromere histone H3- and phospholipase-mediated haploid induction in plants // Plant Methods. 2019. V. 15. № 1. P. 1–10. https://doi.org/10.1186/s13007-019-0429-5
  17. Zhang Z., Qiu F., Liu Y. et al. Chromosome elimination and in vivo haploid production induced by Stock 6 – derived inducer line in maize (Zea mays L.) // Plant Cell Reports. 2008. V. 27. № 12. P. 1851–1860. https://doi.org/10.1007/s00299-008-0601-2
  18. Qiu F., Liang Y., Li Y. et al. Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize // Current Plant Biology. 2014. V. 1. P. 83–90. https://doi.org/10.1016/j.cpb.2014.04.001
  19. Kelliher T., Starr D., Wang W. et al. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize // Frontiers in Plant Sci. 2016. V. 7. P. 414. https://doi.org/10.3389/fpls.2016.00414
  20. Heidmann I., De Lange B., Lambalk J. et al. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor // Plant Cell Rep. 2011. V. 30. P. 1107–1115. https://doi.org/10.1007/s00299-011-1018-x
  21. Florez S.L., Erwin R.L., Maximova S.N. et al. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor // BMC Plant Biol. 2015. V. 15. P. 121. https://doi.org/10.1186/s12870-015-0479-4
  22. Conner J.A., Mookkan M., Huo H. et al. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 36. P. 11205–11210. https://doi.org/10.1073/pnas.1505856112
  23. Conner J.A., Podio M., Ozias-Akins P. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes // Plant Reprod. 2017. V. 30 (1). P. 41–52. https://doi.org/10.1007/s00497-017-0298-x
  24. Moiseeva E.M., Fadeev V.V., Fadeeva Yu.V. et al. Comparative analysis of maize gynogenesis gene mutation // Russ. J. Genet. 2024. V. 60 (10). P. 1333–1340. https://doi.org/10.1134/S102279542470087X
  25. Jiang C., Sun J., Li R. et al. A reactive oxygen species burst causes haploid induction in maize // Molecular Plant. 2022. V. 15 (6). P. 943–955. https://doi.org/10.1016/j.molp.2022.04.001
  26. Xu X., Li L., Dong X. et al. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize // J. Exp. Bot. 2013. V. 64. P. 1083–1096. https://doi.org/10.1093/jxb/ers393
  27. Еналеева Н.Х., Тырнов В.С., Селиванова Л.П., Завалишина А.Н. Одинарное оплодотворение и проблема гаплоиндукции у кукурузы // Докл. АН СССР. 1997. Т. 353. С. 405–407.
  28. Гуторова О.В., Апанасова Н.В., Юдакова О.И. Создание генетически маркированных линий кукурузы с наследуемым и индуцированным типами партеногенеза // Изв. Самарского науч. центра РАН. 2016. Т. 18. № 2. С. 341–344.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Multiple alignment of the amino acid sequence fragment of the Zm_MTL/NLD/PLA1 protein sequence of Stock 6/ZMS-8/ZMS-P haploinducing lines. The site of the amino acid sequence change is marked with a box. Dots in the figure indicate amino acid matches, and dashes indicate the absence of amino acids.

Жүктеу (86KB)
3. Fig. 2. Three-dimensional model of the Zm_PLA1 protein of the B73 (a) and Stock 6/ZMS-8/ZMS-P (b) lines (AlphaFold3). The β-fold and two α-helices of line B73, highlighted in green, are replaced by an unstructured region and an amino acid composition-altered β-fold, highlighted in red, as a result of a four-nucleotide insertion.

Жүктеу (247KB)
4. Fig. 3. Multiple amino acid sequence alignment of DMP8/DUF679 proteins of the B73, CAU5, ZMS-P, and ZMS-8 lines. Amino acid substitutions are shown in bold.

Жүктеу (379KB)
5. Fig. 4. AlphaFold3-predicted three-dimensional structures of the DMP8/DUF679 protein encoded by the Zm_Dmp7/Duf679 gene of maize lines B73 (a), CAU5 (b), ZMS-P (c), and ZMS-8 (d). The locations of amino acid substitutions are marked in red colour.

Жүктеу (214KB)
6. Fig. 5. Nucleotide alignment fragments of the Zm_Bbm1 gene of maize lines B73 and AT-4 containing single-nucleotide substitutions. Dots indicate nucleotide matches; bold letters indicate single-nucleotide substitutions.

Жүктеу (195KB)

© Russian Academy of Sciences, 2025