Population and Genetic Structure of the Siberian Population According to Data on the Frequencies of Polymorphic Variants of Vitamin D Transport and Reception Genes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The gene pools of Siberian peoples are a potential source of data on the compositions of haplotypes of polymorphic gene variants formed during the evolution of populations under the influence of a specific set of natural and climatic factors, in conditions of relative geographical and cultural isolation, as well as traditional subsistence practices. In order to study genetic adaptation to insufficient supply of vitamin D (low level of insolation and availability of nutrients containing cholecalciferol and ergocalciferol) in samples of indigenous Turkic-speaking (Teleuts, Tomsk Tatars, Shors) and foreign East Slavic (Russians) population of Siberia, a study of the frequencies of polymorphic variants (14 SNPs) of genes responsible for transport of vitamin D – GC (Group-Specific Component), the structure of its main receptor – gene VDR (vitamin D receptor) and the RXR receptor (retinoid X receptor) in form of genes RXRA and RXRG was conducted. The total sample size was 411 people. The analysis of polymorphic variant frequencies demonstrated specific features of the gene pools of Siberian indigenous populations compared to the Russian population, global frequencies and frequencies characteristic of populations of Europe and East Asia. In pairwise comparison with the sample of Russians, statistically significant differences were found in terms of frequencies rs7041 (Shors), rs3847987 (Tomsk Tatars, Teleuts, Shors), rs9409929 (Tomsk Tatars, Teleuts), rs877954 (Tomsk Tatars), rs283696 (Teleuts). According to data of average genetic distances (d), the minimum distances were noted between Teleuts and Tomsk Tatars. The sample of Russians in general turned out to be the most distant in the genetic space of the studied peoples of Siberia. The study of haplotype frequencies of polymorphic variants of vitamin D transport and receptor genes demonstrated the accumulation of SNP in the indigenous gene pool associated, according to the literature, with a higher levels of serum vitamin D. According to the GC and VDR genes, the haplotypic profile of polymorphic variants was characterized by pronounced specificity and differed in composition from that of the Russian population. The study allows us to conclude that structure of gene pools of indigenous peoples of Siberia retains a distinctiveness that reflects the history of their composition and demonstrates the features of the genetic adaptation of indigenous populations to environmental conditions.

Full Text

Restricted Access

About the authors

B. A. Tkhorenko

Kemerovo State Medical University of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: tba2008@mail.ru
Russian Federation, Kemerovo, 650056

A. V. Meyer

Kemerovo State Medical University of the Ministry of Health of the Russian Federation

Email: tba2008@mail.ru
Russian Federation, Kemerovo, 650056

G. V. Vavin

Kemerovo State Medical University of the Ministry of Health of the Russian Federation

Email: tba2008@mail.ru
Russian Federation, Kemerovo, 650056

D. O. Imekina

Kemerovo State Medical University of the Ministry of Health of the Russian Federation

Email: tba2008@mail.ru
Russian Federation, Kemerovo, 650056

M. V. Ulyanova

Kemerovo State Medical University of the Ministry of Health of the Russian Federation

Email: tba2008@mail.ru
Russian Federation, Kemerovo, 650056

F. A. Luzina

Research Institute for Complex Problems of Hygiene and Occupational Diseases

Email: tba2008@mail.ru
Russian Federation, Novokuznetsk, 654041

M. B. Lavryashina

Kemerovo State Medical University of the Ministry of Health of the Russian Federation

Email: tba2008@mail.ru
Russian Federation, Kemerovo, 650056

References

  1. IUPAC-IUB joint commission on biochemical nomenclature (jcbn). Nomenclature of vitamin D. Recommendations 1981 // Mol. Cell. Biochem. 1982. V. 49. № 3. P. 177–181. doi: 10.1007/BF00231180
  2. Громова О.А., Торшин И.Ю., Гилельс А.В. и др. Метаболиты витамина D: роль в диагностике и терапии витамин-D-зависимых патологий // Фармакокинетика и фармакодинамика. 2016. № 4. С. 9–18.
  3. Бочкарникова А.Г., Тришкин А.Г., Пустотина О.А., Мозес В. “D-статус” пациенток с репродуктивными нарушениями // Фундаментальная и клиническая медицина. 2018. Т. 3. № 3. С. 6–11.
  4. Christakos S., Dhawan P., Verstuyf A. et al. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects // Physiol. Rev. 2016. V. 96. № 1. P. 365–408. doi: 10.1152/physrev.00014.2015
  5. Voltan G., Cannito M., Ferrarese M. et al. Vitamin D: An overview of gene regulation, ranging from metabolism to genomic effects // Genes (Basel). 2023. V. 14. № 9. doi: 10.3390/genes14091691
  6. Водолазкая А.Н., Орлова С.В., Батышева Т.Т. и др. Факторы, влияющие на биодоступность витамина D // Мед. алфавит. 2023. № 29. С. 55–60. doi: 10.33667/2078-5631-2023-29-55-60
  7. Козлов А.И., Вершубская Г.Г. 25-гидроксивитамин D в различных группах населения Севера России // Физиология человека. 2019. Т. 45. № 5. С. 125–136. doi: 10.1134/S0131164619050060
  8. Luthold R.V., Fernandes G.R., Franco-de-Moraes A.C. et al. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals // Metabolism. 2017. № 69. P. 76–86. doi: 10.1016/j.metabol.2017.01.007
  9. Bakke D., Sun J. Ancient nuclear receptor VDR with new functions: microbiome and inflammation // Inflamm. Bowel. Dis. 2018. V. 24. № 6. P. 1149–1154. doi: 10.1093/ibd/izy092
  10. Boughanem H., Ruiz-Limón P., Pilo J. et al. Linking serum vitamin D levels with gut microbiota after 1-year lifestyle intervention with mediterranean diet in patients with obesity and metabolic syndrome: A nested cross-sectional and prospective study // Gut Microbes. 2023. V. 15. № 2. doi: 10.1080/19490976.2023.2249150
  11. Козлов А.И., Вершубская Г.Г., Лавряшина М.Б., Остроухова И.О. Отражение особенностей традиционного питания в генофондах народов с лесо-таёжным типом природопользования // Вестник МГУ. Серия 23: Антропология. 2020. № 3. С. 46–56. doi: 10.32521/2074-8132.2020.3.046-056
  12. Manousaki D., Mitchell R., Dudding T. et al. Genome-wide association study for vitamin D levels reveals 69 independent loci // Am. J. Hum. Genet. 2020. V. 106. № 3. P. 327–337. doi: 10.1016/j.ajhg.2020.01.017
  13. Вильмс Е.А., Добровольская Е.В., Турчанинов Д.В. и др. Обеспеченность взрослого населения Западной Сибири витамином D: данные популяционного исследования // Вопросы питания. 2019. Т. 88. № 4. С. 75–82. doi: 10.24411/0042-8833-2019-10044
  14. Петрушкина А.А., Пигарова Е.А., Рожинская Л.Я. Эпидемиология дефицита витамина D в Российской Федерации // Остеопороз и остеопатии. 2018. Т. 21. № 3. С. 15–20. doi: 10.14341/osteo10038
  15. Малярчук Б.А. Полиморфизм гена рецептора витамина D у коренного населения Сибири // Вестник Северо-Восточного науч. центра ДВО РАН. 2020. № 3. С. 120–127. doi: 10.34078/1814-0998-2020-3-120-127
  16. Малярчук Б.А., Деренко М.В., Денисова Г.А. Адаптивные изменения генов десатурации жирных кислот у коренного населения Северо-Востока Сибири // Генетика. 2021. Т. 57. № 12. С. 1458–1464. (Malyarchuk B.A., Derenko M.V., Denisova G.A. Adaptive changes in fatty acid desaturation genes in indigenous populations of Northeast Siberia // Rus. J. Genetics. 2021. V. 57. № 12. P. 1461–1466.) doi: 10.31857/S0016675821120109
  17. Козлов А.И., Пылев В.Ю., Вершубская Г.Г., Балановская Е.В. Клинальная изменчивость генетических детерминант трегалазной недостаточности в популяциях Южной Сибири, Казахстана, Центральной Азии и Монголии // Вестник МГУ. Серия 23: Антропология. 2023. № 3. С. 63–71. doi: 10.32521/2074-8132.2023.3.063-071
  18. Малярчук Б.А., Деренко М.В. Оценка роли отбора в эволюции митохондриальных геномов коренного населения Сибири // Вавил. журнал генетики и селекции. 2023. Т. 27. № 3. С. 218–223. doi: 10.18699/VJGB-23-28
  19. Козлов А.И., Малярчук Б.А., Лавряшина М.Б., Вершубская Г.Г. Нарушения усвоения сахарозы подтверждают своеобразие генетической истории эскимосов // Вестник МГУ. Серия 23: Антропология. 2023. № 2. С. 82–91. doi: 10.32521/2074-8132.2023.2.082-091
  20. Доскина Е.В. Роль различных форм витамина D в лечении пациентов с дефицитом витамина D (клинический случай) // Эндокринология. Новости. Мнения. Обучение. 2021. Т. 10. № 2(35). С. 123–129. doi: 10.33029/2304-9529-2021-10-2-123-129
  21. Carlberg C., Raczyk M., Zawrotna N. Vitamin D: A master example of nutrigenomics // Redox. Biol. 2023. V. 62. P. 102695. doi: 10.1016/j.redox.2023.102695
  22. Балановская Е.В., Жабагин М.К., Агджоян А.Т. и др. Популяционные биобанки: принципы организации и перспективы применения в геногеографии и персонализированной медицине // Генетика. 2016. Т. 52. № 12. С. 1371–1387. (Balanovska E.V., Zhabagin M.K. Agdzhoyan A.T. et al. Population biobanks: organizational models and prospects of application in gene geography and personalized medicine // Rus. J. Genetics. 2016. V. 52. № 12. P. 1227–1243.) doi: 10.7868/S001667581612002X
  23. Функ Д.А. Бачатские телеуты в XVIII – первой четверти XX века: историко-этнографическое исследование. М.: Ин-т этнологии и антропологии им. Н.Н. Миклухо-Маклая РАН, 1993. 325 с.
  24. Лавряшина М.Б., Ульянова М.В., Поддубиков В.В. и др. Мониторинг сельских популяций шорцев и телеутов: воспроизводство, среда, гены // Генетика человека и патология: Сб. научных трудов. 2017. №. 11. С. 49–51.
  25. Лузина Ф.А., Колбаско А.В., Лотош О.Е. Демографическая структура и её динамика у телеутов // Бюл. СО РАМН. 2006. № 3. С. 60–63.
  26. Hibler E.A., Hu C., Jurutka P.W. et al. Polymorphic variation in the GC and CASR genes and associations with vitamin D metabolite concentration and metachronous colorectal neoplasia // Cancer Epidemiol. Biomarkers Prev. 2012. V. 21. № 2. P. 368–375. doi: 10.1158/1055-9965.EPI-11-0916
  27. Abbas S., Linseisen J., Slanger T. et al. The GC2 allele of the vitamin D binding protein is associated with a decreased postmenopausal breast cancer risk, independent of the vitamin D status // Cancer Epidemiol. Biomarkers Prev. 2008. V. 17. № 6. P. 1339–1343. doi: 10.1158/1055-9965.EPI-08-0162
  28. Gibbs D.C., Fedirko V., Um C. et al. Associations of circulating 25-hydroxyvitamin D3 concentrations with incident, sporadic colorectal adenoma risk according to common vitamin D-binding protein isoforms // Am. J. Epidemiol. 2018. V. 187. № 9. P. 1923–1930. doi: 10.1093/aje/kwy102
  29. Ashok N., Saraswathy R. Association of polymorphisms of vitamin D gene in children with asthma and allergic rhinitis – Hospital based study // Heliyon. 2023. V. 10. № 1. doi: 10.1016/j.heliyon. 2023.e23673
  30. Ferraz R.S., Silva C.S., Cavalcante G.C. et al. Variants in the VDR gene may influence 25(OH)D levels in type 1 diabetes mellitus in a brazilian population // Nutrients. 2022. V. 14. № 5. doi: 10.3390/nu14051010
  31. Zhao X.Q., Wan H.Y., He S.Y. et al. Vitamin D receptor genetic polymorphisms associate with a decreased susceptibility to extremity osteomyelitis partly by inhibiting macrophage apoptosis through inhibition of excessive ROS production via VDR-Bmi1 signaling // Front. Physiol. 2022. № 13. doi: 10.3389/fphys.2022.808272
  32. Jia J., Tang Y., Shen C. et al. Vitamin D receptor polymorphism rs2228570 is significantly associated with risk of dyslipidemia and serum LDL levels in Chinese Han population // Lipids Health Dis. 2018. V. 17. № 1. P. 193. doi: 10.1186/s12944-018-0819-0
  33. Zhang D., Cheng C., Wang Y. et al. The influence of VDR polymorphisms on the type 2 diabetes susceptibility in Chinese: An interaction with hypertriglyceridemia // Mol. Genet. Genomics. 2021. V. 296. № 4. P. 837–844. doi: 10.1007/s00438-021-01784-z
  34. Levin G.P., Robinson-Cohen C., de Boer I.H. et al. Genetic variants and associations of 25-hydroxyvitamin D concentrations with major clinical outcomes // Jama. 2012. V. 308. № 18. P. 1898–1905. doi: 10.1001/jama.2012.17304
  35. Hibler E.A., Jurutka P.W., Egan J.B. et al. Association between polymorphic variation in VDR and RXRA and circulating levels of vitamin D metabolites // The J. Steroid Biochemistry and Mol. Biology. 2010. V. 121. № 1–2. P. 438–441. doi: 10.1016/j.jsbmb.2010.03.05
  36. Sentinelli F., Minicocci I., Montali A. et al. Association of RXR-gamma gene variants with familial combined hyperlipidemia: genotype and haplotype analysis // J. Lipids. 2013. № 2013. doi: 10.1155/2013/51794

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The position of the gene pools of the studied peoples in the general genetic space according to the data of the panel of 14 SNP genes of the vitamin D system (Ward's method).

Download (55KB)
3. Fig. 2. Frequencies of common haplotypes of polymorphic variants of the studied gene complex in samples of indigenous peoples and Russians of Siberia.

Download (487KB)

Copyright (c) 2024 Russian Academy of Sciences