Partenogenesis Maize genes: Comparative Mutations Analysis
- Authors: Moiseeva E.M.1, Fadeev V.V.1, Fadeeva Y.V.1, Mazilov S.I.1, Kolesova A.Y.2, Chumakov M.I.1
-
Affiliations:
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”
- Federal Center of Agriculture Research of the South-East Region
- Issue: Vol 60, No 12 (2024)
- Pages: 43–53
- Section: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://rjpbr.com/0016-6758/article/view/676594
- DOI: https://doi.org/10.31857/S0016675824120057
- EDN: https://elibrary.ru/wanbda
- ID: 676594
Cite item
Abstract
The article presents an analysis of the polymorphism of nucleotide sequences of the genes presumably associated with the parthenogenetic development of the embryo and endosperm in maize. Sequencing and subsequent multiple alignment of transcripts of the target genes (Hdt104, Chr106, Fie1 and Fie2) studied in the work of the AT-1, AT-3 and AT-4 parthenogenetic maize lines and the reference line B73 determined the presence of SNP, deletions and insertions. The phylogenetic trees for the studied genes were constructed.
Keywords
Full Text

About the authors
E. M. Moiseeva
Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049
V. V. Fadeev
Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049
Yu. V. Fadeeva
Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049
S. I. Mazilov
Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049
A. Y. Kolesova
Federal Center of Agriculture Research of the South-East Region
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410010
M. I. Chumakov
Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”
Author for correspondence.
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049
References
- Белова И., Тараканова Т., Абдырахманова Э. и др. Хромосомный контроль апомиксиса у гибридов кукурузы с гамаграссом // Генетика. 2010. Т. 46. № 9. С. 1188–1191 (Belova I.V., Tarakanova T.K., Abdyrahmanova E.A. et al. Chromosome control of apomixis in maize-gamagrass hybrids / Russ. J. Genet. 2010. V. 46. P. 1055–1057. https://doi.org/10.1134/S1022795410090103
- Grimanelli D. Epigenetic regulationof reproductive development and the emergence of apomixes in angiosperms // Current Opinion in Plant Biology. 2012. V. 15. P. 57–62. https://doi.org/10.1016/j.pbi.2011.10.002
- Koltunow A.M., Grossniklaus U. Apomixis: A developmental perspective // Annual Review of Plant Biology. 2003. Т. 54. № 1. С. 547–574. https://doi.org/10.1146/annurev.arplant.54.110901.160842
- Bicknell R., Koltunow A. Understanding apomixis: Recent advances and remaining conundrums // The Plant Cell. 2004. V. 16. P. 228–245. https://doi.org/10.1105/tpc.017921
- Bradley J., Carman J., Jamison M., Naumova T. Heterochronic features of the female germline among several sexual diploid Tripsacum L. (Andropogoneae, Poaceae) // Sex. Plant Reprod. 2007. V. 20. P. 9–17. https://doi.org/10.1007/s00497-006-0038-0
- Sauter M., Wiegen P., Lörz H., Kranz E. Cell cycle regulatory genes from maize are differentially controlled during fertilization and first embryonic cell division // Sex Plant Reprod. 1998. V. 11. Р. 41–48. https://doi.org/10.1007/s004970050119
- Liu X., Fu J., Gu D. et al. Genome-wide analysis of gene expression profiles during the kernel development of Zea mays // Genomics. 2008. V. 91. P. 378–387. https://doi.org/10.1016/j.ygeno.2007.12.002
- Garcia-Aguilar M., Michaud C., Leblanc O., Grimanelli D. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes // The Plant Cell. 2010. V. 22. P. 3249–3267. https://doi.org/10.1105/tpc.109.072181
- Leblanc O., Grimanelli D., Hernandez-Rodriguez M. et al. Seed development and inheritance studies in apomictic maize – Tripsacum hybrids reveal barriers for the transfer of apomixis into sexual crops // Int. J. Dev. Biol. 2009. V. 53. P. 585–596. https://doi.org/10.1387/ijdb.082813ol
- Matsuoka Y. Original matters: Lessons from the search for the wild ancestors of maize // Breeding Sci. 2005. V. 33. P. 383–390. ttps://doi.org/10.1270/jsbbs.55.383
- Тырнов B.C., Еналеева Н.Х. Автономное развитие зародыша и эндосперма у кукурузы // Докл. АН СССР. 1983. Т. 272. № 3. С. 722–725.
- Еналеева Н.Х., Тырнов В.С., Селиванова Л.П., Завалишина А.Н. Одинарное оплодотворение и проблема гаплоиндукции у кукурузы // Докл. АН СССР. 1997. Т. 353. С. 405–407.
- Kolesova A.Y., Tyrnov V.S. Embryological peculiarities of tetraploid parthenogenetic maize forms // Maize Genet. Cooperation Newsletter. 2012. V. 85. P. 65–66.
- Гуторова О.В., Апанасова Н.В., Юдакова О.И. Создание генетически маркированных линий кукурузы с наследуемым и индуцированным типами партеногенеза // Изв. Самарского науч. центра Российской акад. наук. 2016. T. 18. № 2. C. 341–344.
- Danilevskaya O.N., Hermon P., Hantke S. et al. Duplicated fie genes in maize: Expression pattern and imprinting suggest distinct functions // Plant Cell. 2003. V. 15. P. 425–438. https://doi.org/10.1105/tpc.006759
- Hermon P., Srilunchang K., Zou J. et al. Activation of the imprinted Polycomb group Fie1 gene in maize endosperm requires demethylation of the maternal allele // Plant Mol. Biol. 2007. V. 64. Р. 387–395. https://doi.org/10.1007/s11103-007-9160-0
- Makarevitch I., Eichten S.R., Briskine R. et al. Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27 // Plant Cell. 2013. V. 25. P. 780–793. https://doi.org/10.1105/tpc.112.106427
- Li Q., Eichten S.R., Hermanson P.J. et al. Genetic perturbation of the maize methylome // Plant Cell. 2014. V. 26. P. 4602–4616. https://doi.org/10.1105/tpc.114.133140
- Чумаков М.И., Мазилов С.И. Генетический контроль гиногенеза у кукурузы (обзор) // Генетика. 2022. Т. 58. № 4. C. 388–397. doi: 10.31857/S001667582204004X (Chumakov M. I., Mazilov S. I. Genetic control of maize gynogenesis // Rus. J. Genet. 2022. V. 58. № 4. P. 384–392. https://doi.org/10.1134/S1022795422040044
- Volokhina I., Gusev Y., Moiseeva Y. et al. Expression of genes coding for chromatin-modifying enzymes maize embryo sacs before and after pollination // Plant Gene. 2020. V. 22. https://doi.org/10.1016/j.plgene.2020.100221
- Volokhina I., Gusev Y., Moiseeva Y. et al. Gene expression in parthenogenic maize proembryos // Plants. 2021. V. 10. https://doi.org/10.3390/plants10050964
- Mozgova I., Kohler C., Hennig L. Keeping the gate closed: Functions of the polycomb repressive complex PRC2 in development // The Plant J. 2015. V. 83. P. 121–132. https://doi.org/10.1111/tpj.12828
- Grossniklaus U., Vielle-Calzada J.P., Hoeppner M.A., Gagliano W.B. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis // Science. 1998. V. 280. P. 446–450. https://doi.org/10.1126/science.280.5362.446
- Luo M., Bilodeau P., Koltunow A. et al. Genes controlling fertilization-independent seed development in Arabidopsis thaliana // Proc. Nat. Acad. Sci. USA. 1999. V. 96. № 1. P. 296–301. https://doi.org/10.1073/pnas.96.1.296
- Ohad N., Yadegari R., Margossian L. et al. Mutations in FIE, a WD Polycomb group gene, allow endosperm development without fertilization // Plant Cell. 1999. V. 11. P. 407–416. https://doi.org/10.1105/tpc.11.3.407
- Luo M., Platten D., Chaudhury A. et al. Expression, imprinting, and evolution of rice homologs of the polycomb group genes // Mol. Plant. 2009. V. 2. № 4. P. 711–723. https://doi.org/10.1093/mp/ssp036
- Wu X., Xie L., Sun X. et al. Mutation in Polycomb repressive complex 2 gene OsFIE2 promotes asexual embryo formation in rice // Nat. Plants. 2023. V. 9. № 11. P. 1848–1861. https://doi.org/10.1038/s41477-023-01536-4
- Enaleeva N.Ch., Tyrnov V.S. Cytological manifestation of apomixis in AT-1 plants of corn // Maize Genet. Cooperation Newsletter. 1997. № 71. P. 74–75.
- Coe E.H. A line of maize with high haploid frequency // Am. Naturalist. 1959. V. 59. P. 381–382. https://doi.org/10.1086/282098
- Апанасова Н.В., Гуторова О.В., Юдакова О.И., Смолькина Ю.В. Особенности строения и развития женских генеративных структур у линий кукурузы с наследуемым и индуцированным типами партеногенеза // Изв. Самарского науч. центра Российской акад. наук. 2017. Т. 19. № 2 (2). С. 216–219.
- Tyrnov V.S. Producing of parthenogenetic forms of maize // Maize Genet. Cooperation Newsletter. 1997. V. 71. P. 73–74.
- Tyrnov V.S., Smolkina Y.V., Titovets V.V. Estimation of parthenogenesis frequency on the grounds of genetical and embryological data // Maize Genet. Cooperation Newsletter. 2001. V. 75. P. 56–57.
- Tamura K., Nei M., Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method // Proc. Nat. Acad. Sci. USA. 2004. V. 101 (30). P. 11030–11035. https://doi.org/10.1073/pnas.04042061
- Tamura K., Stecher G., Kumar S. MEGA 11: Molecular evolutionary genetics analysis version 11 // Mol. Biol. Evol. 2021. V. 38 (7). P. 3022–3027. https://doi.org/10.1093/molbev/msab120
- Смолькина Ю.В. Особенности развития завязей у партеногенетических линий кукурузы без опыления // Бюл. Ботан. сада Саратовского гос. ун-та. 2003. № 2. С. 197–201.
- Еналеева Н.Х., Тырнов В.С. Цитологическое проявление элементов апомиксиса у линии кукурузы АТ-1 и ее гибридов // Апомиксис у растений: состояние, проблемы и перспективы исследования. Саратов, 1994. С. 57–59.
Supplementary files
