Induction of Trained Immunity by BCG: Recent Data and Opinions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bacillus Calmette-Guerin (BCG), developed in the early 20th century to protect against tuberculosis, is one of the most widely used vaccines in the world. In addition to protecting against tuberculosis, this vaccine has also been shown to reduce the risk of various other infections. During the COVID-19 pandemic, it was found that BCG-vaccinated health care workers had lower detection rates of the SARS-CoV-2 virus compared to unvaccinated individuals. This appears to be due to the generation of trained immunity (TRIM) and non-specific protective effects (NSE), which are likely attributed to the epigenetic and metabolic reprogramming of innate immune cells, known as trained immunity. NSE further holds promise for the development of future therapeutics that can protect against unpredictable pandemics. Additionally, TRIM inducers provide new perspectives on improving the efficacy of standard vaccines by incorporating them into vaccine formulations to enhance both specific and nonspecific immune responses.

Full Text

Restricted Access

About the authors

I. V. Alekseenko

National Research Center “Kurchatov Institute”; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: edsverd@gmail.com
Russian Federation, Moscow, 123182; Moscow, 117997

L. G. Kondratyeva

National Research Center “Kurchatov Institute”; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: edsverd@gmail.com
Russian Federation, Moscow, 123182; Moscow, 117997

I. P. Chernov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: edsverd@gmail.com
Russian Federation, Moscow, 117997

E. D. Sverdlov

National Research Center “Kurchatov Institute”

Email: liakondratyeva@yandex.ru
Russian Federation, Moscow, 123182

References

  1. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. V. 395. № 10223. P. 497–506. doi: 10.1016/S0140-6736(20)30183-5
  2. Shaman J., Galanti M. Will SARS-CoV-2 become endemic? // Science. 2020. V. 370. № 6516. P. 527–529. doi: 10.1126/science.abe5960
  3. Otto S.P., MacPherson A., Colijn C. Endemic does not mean constant as SARS-CoV-2 continues to evolve // Evolution. 2024. V. 10. doi: 10.1093/evolut/qpae041
  4. Soheili M., Khateri S., Moradpour F. et al. The efficacy and effectiveness of COVID-19 vaccines around the world: A mini-review and meta-analysis // Ann. Clin. Microbiology and Antimicrobials. 2023. V. 22. № 1. P. 42. doi: 10.1186/s12941-023-00594-y
  5. Netea M.G., van der Meer J.W., van Crevel R. BCG vaccination in health care providers and the protection against COVID-19 // J. Clin. Invest. 2021. V. 131. № 2. doi: 10.1172/JCI145545
  6. Aaby P., Benn C.S., Flanagan K.L. et al. The non-specific and sex-differential effects of vaccines // Nat. Rev. Immunol. 2020. V. 20. № 8. P. 464–470. doi: 10.1038/s41577-020-0338-x
  7. Higgins J.P., Soares-Weiser K., Lopez-Lopez J.A. et al. Association of BCG, DTP, and measles containing vaccines with childhood mortality: Systematic review // BMJ. 2016. V. 355. doi: 10.1136/bmj.i5170
  8. Baydemir I., Dulfer E.A., Netea M.G., Dominguez-Andres J. Trained immunity-inducing vaccines: Harnessing innate memory for vaccine design and delivery // Clin. Immunol. 2024. V. 261. doi: 10.1016/j.clim.2024.109930
  9. Shann F. The non-specific effects of vaccines // Arch. Dis. Child. 2010. V. 95. № 9. P. 662–667. doi: 10.1136/adc.2009.157537
  10. Stensballe L.G., Nante E., Jensen I.P. et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: A beneficial effect of BCG vaccination for girls community based case-control study // Vaccine. 2005. V. 23. № 10. P. 1251–1257. doi: 10.1016/j.vaccine.2004.09.006
  11. Nemes E., Geldenhuys H., Rozot V. et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination // N. Engl. J. Med. 2018. V. 379. № 2. P. 138–149. doi: 10.1056/NEJMoa1714021
  12. Giamarellos-Bourboulis E.J., Tsilika M., Moorlag S. et al. Activate: Randomized clinical trial of BCG vaccination against infection in the elderly // Cell. 2020. V. 183. № 2. P. 315–323. doi: 10.1016/j.cell.2020.08.051
  13. Spencer J.C., Ganguly R., Waldman R.H. Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guerin // J. Infect. Dis. 1977. V. 136. № 2. P. 171–175. doi: 10.1093/infdis/136.2.171
  14. Kleinnijenhuis J., Quintin J., Preijers F. et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes // Proc. Natl Acad. Sci. USA. 2012. V. 109. № 43. P. 17537–17542. doi: 10.1073/pnas.1202870109
  15. Cirovic B., de Bree L.C.J., Groh L. et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment // Cell Host Microbe. 2020. V. 28. № 2. P. 322–334. doi: 10.1016/j.chom.2020.05.014
  16. Arts R.J.W., Moorlag S., Novakovic B. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity // Cell Host Microbe. 2018. V. 23. № 1. P. 89–100. doi: 10.1016/j.chom.2017.12.010
  17. Rivas M.N., Ebinger J.E., Wu M. et al. BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of health care workers // J. Clin. Invest. 2021. V. 131. № 2. doi: 10.1172/JCI145157
  18. Escobar L.E., Molina-Cruz A., Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19) // Proc. Natl Acad. Sci. USA. 2020. V. 117. № 30. P. 17720–17726. doi: 10.1073/pnas.2008410117
  19. Berg M.K., Yu Q., Salvador C.E. et al. Mandated Bacillus Calmette-Guerin (BCG) vaccination predicts flattened curves for the spread of COVID-19 // Sci. Adv. 2020. V. 6. № 32. doi: 10.1126/sciadv.abc1463
  20. Hamiel U., Kozer E., Youngster I. SARS-CoV-2 rates in BCG-vaccinated and unvaccinated young adults // JAMA. 2020. V. 323. № 22. P. 2340–2341. doi: 10.1001/jama.2020.8189
  21. Moorlag S., van Deuren R.C., van Werkhoven C.H. et al. Safety and COVID-19 symptoms in individuals recently vaccinated with BCG: A retrospective cohort study // Cell. Rep. Med. 2020. V. 1. № 5. doi: 10.1016/j.xcrm.2020.100073
  22. Amirlak L., Haddad R., Hardy J.D. et al. Effectiveness of booster BCG vaccination in preventing Covid-19 infection // Hum. Vaccin. Immunother. 2021. V. 17. № 11. P. 3913–3915. doi: 10.1080/21645515.2021.1956228
  23. Pascolo S. Vaccines against COVID-19: Priority to mRNA-based formulations // Cells. 2021. V. 10. № 10. doi: 10.3390/cells10102716
  24. Sukhikh G.T., Priputnevich T.V., Ogarkova D.A. et al. Sputnik light and sputnik v vaccination is effective at protecting medical personnel from COVID-19 during the period of delta variant dominance // Vaccines. 2022. V. 10. № 11. doi: 10.3390/vaccines10111804
  25. Алексеенко И.В., Василов Р.Г., Кондратьева Л.Г. и др. Клеточные и эпигенетические аспекты программирования тренированного иммунитета и перспективы создания универсальных вакцин в преддверии учащающихся пандемий // Генетика. 2023. Т. 59. № 9. C. 981–1001. doi: 10.31857/S0016675823090023 (Alekseenko I., Vasilov R., Kondratyeva L. et al. The Cellular and Epigenetic Aspects of Trained Immunity and Prospects for Creation of Universal Vaccines on the Eve of More Frequent Pandemics // Russian Journal of Genetics. 2023. V. 59. № 9. P. 851–868.)
  26. Munoz-Wolf N., Lavelle E.C. Promotion of trained innate immunity by nanoparticles // Semin. Immunol. 2021. V. 56. doi: 10.1016/j.smim.2021.101542
  27. Hajishengallis G., Netea M.G., Chavakis T. Innate immune memory, trained immunity and nomenclature clarification // Nat. Immunol. 2023. V. 24. № 9. P. 1393–1394. doi: 10.1038/s41590-023-01595-x
  28. Kaufmann E., Sanz J., Dunn J.L. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis // Cell. 2018. V. 172. № 1–2. P. 176–190. doi: 10.1016/j.cell.2017.12.031
  29. Verma D., Parasa V.R., Raffetseder J. et al. Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects // Sci. Rep. 2017. V. 7. № 1. P. 12305. doi: 10.1038/s41598-017-12110-2
  30. Singh S., Saavedra-Avila N.A., Tiwari S., Porcelli S.A. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19 // Front. Immunol. 2022. V. 13. doi: 10.3389/fimmu.2022.959656
  31. Murphy D.M., Mills K.H.G., Basdeo S.A. The effects of trained innate immunity on T cell responses; clinical implications and knowledge gaps for future research // Front. Immunol. 2021. V. 12. doi: 10.3389/fimmu.2021.706583
  32. Wang Y., Ge F., Wang J. et al. Mycobacterium bovis BCG given at birth followed by inactivated respiratory syncytial virus vaccine prevents vaccine-enhanced disease by promoting trained macrophages and resident memory T cells // J. Virol. 2023. V. 97. № 3. doi: 10.1128/jvi.01764-22
  33. Blok B.A., Arts R.J.W., van Crevel R. et al. Differential effects of BCG vaccine on immune responses induced by vi polysaccharide typhoid fever vaccination: an explorative randomized trial // Eur. J. Clin. Microbiol. Infect. Dis. 2020. V. 39. № 6. P. 1177–1184. doi: 10.1007/s10096-020-03813-y
  34. Gillard J., Blok B.A., Garza D.R. et al. BCG-induced trained immunity enhances acellular pertussis vaccination responses in an explorative randomized clinical trial // NPJ Vaccines. 2022. V. 7. № 1. P. 21. doi: 10.1038/s41541-022-00438-4
  35. Kleinnijenhuis J., Quintin J., Preijers F. et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity // J. Innate. Immun. 2014. V. 6. № 2. P. 152–158. doi: 10.1159/000355628
  36. Moorlag S.J., Folkman L., Ter Horst R. et al. Multi-omics analysis of innate and adaptive responses to BCG vaccination reveals epigenetic cell states that predict trained immunity // Immunity. 2024. V. 57. № 1. P. 171–187. doi: 10.1016/j.immuni.2023.12.005
  37. Joseph J. Trained immunity as a prospective tool against emerging respiratory pathogens // Vaccines. 2022. V. 10. № 11. doi: 10.3390/vaccines10111932
  38. Chen J., Gao L., Wu X. et al. BCG-induced trained immunity: History, mechanisms and potential applications // J. Transl. Med. 2023. V. 21. № 1. P. 106. doi: 10.1186/s12967-023-03944-8
  39. O'Neill L.A.J., Netea M.G. BCG-induced trained immunity: Can it offer protection against COVID-19? // Nat. Rev. Immunol. 2020. V. 20. № 6. P. 335–337. doi: 10.1038/s41577-020-0337-y
  40. Neumann G., Kawaoka Y. Which virus will cause the next pandemic? // Viruses. 2023. V. 15. № 1. doi: 10.3390/v15010199
  41. He Y., Liu W.J., Jia N. et al. Viral respiratory infections in a rapidly changing climate: The need to prepare for the next pandemic // EBioMedicine. 2023. V. 93. doi: 10.1016/j.ebiom.2023.104593
  42. Piret J., Boivin G. The impact of trained immunity in respiratory viral infections // Rev. Med. Virol. 2024. V. 34. № 1. doi: 10.1002/rmv.2510
  43. Zhu J., Liu J., Yan C. et al. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? // Front. Immunol. 2023. V. 14. doi: 10.3389/fimmu.2023.1252554
  44. Гладков О., Зуков Р., Матвеев В. et al. Практические рекомендации по лекарственному лечению рака мочевого пузыря // Злокачественные опухоли. 2022. V. 12. № 3S2-1. P. 589–606. doi: 10.18027/2224-5057-2022-12-3s2-589-606
  45. Kaur G., Singh S., Nanda S. et al. Fiction and facts about bcg imparting trained immunity against COVID-19 // Vaccines. 2022. V. 10. № 7. doi: 10.3390/vaccines10071006
  46. Chen J., Gao L., Wu X. et al. BCG-induced trained immunity: history, mechanisms and potential applications // J. of Transplational Medicine. 2023. V. 21. № 1. P. 106. doi: 10.1186/s12967-023-03944-8
  47. Коняшкина С.Ю., Рева С., Петров С. Лабораторные предикторы ответа на внутрипузырную БЦЖ-терапию у пациентов с немышечно-инвазивным раком мочевого пузыря // Вестник урологии. 2022. T. 10. № 4. P. 155–164. doi: 0.21886/2308-6424-2022-10-4-155-164
  48. Jiang S., Redelman-Sidi G. BCG in bladder cancer immunotherapy // Cancers (Basel). 2022. V. 14. № 13. doi: 10.3390/cancers14133073
  49. Pshennikova E., Voronina A. Dormancy: There and back again // Mol. Biology. 2022. V. 56. № 5. P. 735–755. doi: 10.1134/S0026893322050119
  50. De Araujo A., Mambelli F., Sanches R.O. et al. Current understanding of bacillus calmette-guerin-mediated trained immunity and its perspectives for controlling intracellular infections // Pathogens. 2023. V. 12. № 12. doi: 10.3390/pathogens12121386
  51. Ziogas A., Bruno M., van der Meel R. et al. Trained immunity: Target for prophylaxis and therapy // Cell Host Microbe. 2023. V. 31. № 11. P. 1776–1791. doi: 10.1016/j.chom.2023.10.015
  52. Dominguez-Andres J., Dos Santos J.C., Bekkering S. et al. Trained immunity: Adaptation within innate immune mechanisms // Physiol. Rev. 2023. V. 103. № 1. P. 313–346. doi: 10.1152/physrev.00031.2021
  53. Chapman R., Bourn W.R., Shephard E. et al. The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen // PLoS One. 2014. V. 9. № 7. doi: 10.1371/journal.pone.0103314
  54. Kim B.J., Kim B.R., Kook Y.H., Kim B.J. Development of a live recombinant BCG expressing Human Immunodeficiency Virus Type 1 (HIV-1) Gag using a pMyong2 vector system: potential use as a novel HIV-1 vaccine // Front. Immunol. 2018. V. 9. doi: 10.3389/fimmu.2018.00643
  55. Kilpelainen A., Saubi N., Guitart N. et al. Recombinant BCG expressing HTI prime and recombinant ChAdOx1 boost is safe and elicits HIV-1-specific T-Cell responses in BALB/c mice // Vaccines (Basel). 2019. V. 7. № 3. P. 78. doi: 10.3390/vaccines7030078
  56. Gupta P.K. New disease old vaccine: Is recombinant BCG vaccine an answer for COVID-19? // Cell Immunol. 2020. V. 356. doi: 10.1016/j.cellimm.2020.104187
  57. Peng X., Zhou Y., Zhang B. et al. Mucosal recombinant BCG vaccine induces lung-resident memory macrophages and enhances trained immunity via mTORC2/HK1-mediated metabolic rewiring // J. Biol. Chem. 2024. V. 300. № 1. doi: 10.1016/j.jbc.2023.105518

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Trained immunity is mediated by metabolic and epigenetic remodeling in innate immune cells that results in increased gene transcription and host defense against heterologous pathogens. Following the first exposure to a live or live attenuated pathogen, the innate immune response enters a “trained” state, ready to be amplified following a second infection. A naive, unstimulated cell (1) exhibits highly condensed chromatin. Its primary stimulation results in epigenetic modifications of chromatin (such as histone acetylation (Ac) or methylation (Me)) that promote chromatin unfolding and facilitate gene transcription (2). These epigenetic changes may persist or may be only partially reversed after the stimulus has ceased (3) and may thus generate robust and memorizable innate immune memory that is elicited in response to a secondary inflammatory stimulus (4) (based on [5, 26, 27]).

Download (508KB)

Copyright (c) 2024 Russian Academy of Sciences