Induction of Trained Immunity by BCG: Recent Data and Opinions
- Authors: Alekseenko I.V.1,2, Kondratyeva L.G.1,2, Chernov I.P.2, Sverdlov E.D.1
-
Affiliations:
- National Research Center “Kurchatov Institute”
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 60, No 12 (2024)
- Pages: 16–24
- Section: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://rjpbr.com/0016-6758/article/view/676591
- DOI: https://doi.org/10.31857/S0016675824120022
- EDN: https://elibrary.ru/wavthu
- ID: 676591
Cite item
Abstract
Bacillus Calmette-Guerin (BCG), developed in the early 20th century to protect against tuberculosis, is one of the most widely used vaccines in the world. In addition to protecting against tuberculosis, this vaccine has also been shown to reduce the risk of various other infections. During the COVID-19 pandemic, it was found that BCG-vaccinated health care workers had lower detection rates of the SARS-CoV-2 virus compared to unvaccinated individuals. This appears to be due to the generation of trained immunity (TRIM) and non-specific protective effects (NSE), which are likely attributed to the epigenetic and metabolic reprogramming of innate immune cells, known as trained immunity. NSE further holds promise for the development of future therapeutics that can protect against unpredictable pandemics. Additionally, TRIM inducers provide new perspectives on improving the efficacy of standard vaccines by incorporating them into vaccine formulations to enhance both specific and nonspecific immune responses.
Full Text

About the authors
I. V. Alekseenko
National Research Center “Kurchatov Institute”; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Email: edsverd@gmail.com
Russian Federation, Moscow, 123182; Moscow, 117997
L. G. Kondratyeva
National Research Center “Kurchatov Institute”; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: edsverd@gmail.com
Russian Federation, Moscow, 123182; Moscow, 117997
I. P. Chernov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Email: edsverd@gmail.com
Russian Federation, Moscow, 117997
E. D. Sverdlov
National Research Center “Kurchatov Institute”
Email: liakondratyeva@yandex.ru
Russian Federation, Moscow, 123182
References
- Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. V. 395. № 10223. P. 497–506. doi: 10.1016/S0140-6736(20)30183-5
- Shaman J., Galanti M. Will SARS-CoV-2 become endemic? // Science. 2020. V. 370. № 6516. P. 527–529. doi: 10.1126/science.abe5960
- Otto S.P., MacPherson A., Colijn C. Endemic does not mean constant as SARS-CoV-2 continues to evolve // Evolution. 2024. V. 10. doi: 10.1093/evolut/qpae041
- Soheili M., Khateri S., Moradpour F. et al. The efficacy and effectiveness of COVID-19 vaccines around the world: A mini-review and meta-analysis // Ann. Clin. Microbiology and Antimicrobials. 2023. V. 22. № 1. P. 42. doi: 10.1186/s12941-023-00594-y
- Netea M.G., van der Meer J.W., van Crevel R. BCG vaccination in health care providers and the protection against COVID-19 // J. Clin. Invest. 2021. V. 131. № 2. doi: 10.1172/JCI145545
- Aaby P., Benn C.S., Flanagan K.L. et al. The non-specific and sex-differential effects of vaccines // Nat. Rev. Immunol. 2020. V. 20. № 8. P. 464–470. doi: 10.1038/s41577-020-0338-x
- Higgins J.P., Soares-Weiser K., Lopez-Lopez J.A. et al. Association of BCG, DTP, and measles containing vaccines with childhood mortality: Systematic review // BMJ. 2016. V. 355. doi: 10.1136/bmj.i5170
- Baydemir I., Dulfer E.A., Netea M.G., Dominguez-Andres J. Trained immunity-inducing vaccines: Harnessing innate memory for vaccine design and delivery // Clin. Immunol. 2024. V. 261. doi: 10.1016/j.clim.2024.109930
- Shann F. The non-specific effects of vaccines // Arch. Dis. Child. 2010. V. 95. № 9. P. 662–667. doi: 10.1136/adc.2009.157537
- Stensballe L.G., Nante E., Jensen I.P. et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: A beneficial effect of BCG vaccination for girls community based case-control study // Vaccine. 2005. V. 23. № 10. P. 1251–1257. doi: 10.1016/j.vaccine.2004.09.006
- Nemes E., Geldenhuys H., Rozot V. et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination // N. Engl. J. Med. 2018. V. 379. № 2. P. 138–149. doi: 10.1056/NEJMoa1714021
- Giamarellos-Bourboulis E.J., Tsilika M., Moorlag S. et al. Activate: Randomized clinical trial of BCG vaccination against infection in the elderly // Cell. 2020. V. 183. № 2. P. 315–323. doi: 10.1016/j.cell.2020.08.051
- Spencer J.C., Ganguly R., Waldman R.H. Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guerin // J. Infect. Dis. 1977. V. 136. № 2. P. 171–175. doi: 10.1093/infdis/136.2.171
- Kleinnijenhuis J., Quintin J., Preijers F. et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes // Proc. Natl Acad. Sci. USA. 2012. V. 109. № 43. P. 17537–17542. doi: 10.1073/pnas.1202870109
- Cirovic B., de Bree L.C.J., Groh L. et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment // Cell Host Microbe. 2020. V. 28. № 2. P. 322–334. doi: 10.1016/j.chom.2020.05.014
- Arts R.J.W., Moorlag S., Novakovic B. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity // Cell Host Microbe. 2018. V. 23. № 1. P. 89–100. doi: 10.1016/j.chom.2017.12.010
- Rivas M.N., Ebinger J.E., Wu M. et al. BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of health care workers // J. Clin. Invest. 2021. V. 131. № 2. doi: 10.1172/JCI145157
- Escobar L.E., Molina-Cruz A., Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19) // Proc. Natl Acad. Sci. USA. 2020. V. 117. № 30. P. 17720–17726. doi: 10.1073/pnas.2008410117
- Berg M.K., Yu Q., Salvador C.E. et al. Mandated Bacillus Calmette-Guerin (BCG) vaccination predicts flattened curves for the spread of COVID-19 // Sci. Adv. 2020. V. 6. № 32. doi: 10.1126/sciadv.abc1463
- Hamiel U., Kozer E., Youngster I. SARS-CoV-2 rates in BCG-vaccinated and unvaccinated young adults // JAMA. 2020. V. 323. № 22. P. 2340–2341. doi: 10.1001/jama.2020.8189
- Moorlag S., van Deuren R.C., van Werkhoven C.H. et al. Safety and COVID-19 symptoms in individuals recently vaccinated with BCG: A retrospective cohort study // Cell. Rep. Med. 2020. V. 1. № 5. doi: 10.1016/j.xcrm.2020.100073
- Amirlak L., Haddad R., Hardy J.D. et al. Effectiveness of booster BCG vaccination in preventing Covid-19 infection // Hum. Vaccin. Immunother. 2021. V. 17. № 11. P. 3913–3915. doi: 10.1080/21645515.2021.1956228
- Pascolo S. Vaccines against COVID-19: Priority to mRNA-based formulations // Cells. 2021. V. 10. № 10. doi: 10.3390/cells10102716
- Sukhikh G.T., Priputnevich T.V., Ogarkova D.A. et al. Sputnik light and sputnik v vaccination is effective at protecting medical personnel from COVID-19 during the period of delta variant dominance // Vaccines. 2022. V. 10. № 11. doi: 10.3390/vaccines10111804
- Алексеенко И.В., Василов Р.Г., Кондратьева Л.Г. и др. Клеточные и эпигенетические аспекты программирования тренированного иммунитета и перспективы создания универсальных вакцин в преддверии учащающихся пандемий // Генетика. 2023. Т. 59. № 9. C. 981–1001. doi: 10.31857/S0016675823090023 (Alekseenko I., Vasilov R., Kondratyeva L. et al. The Cellular and Epigenetic Aspects of Trained Immunity and Prospects for Creation of Universal Vaccines on the Eve of More Frequent Pandemics // Russian Journal of Genetics. 2023. V. 59. № 9. P. 851–868.)
- Munoz-Wolf N., Lavelle E.C. Promotion of trained innate immunity by nanoparticles // Semin. Immunol. 2021. V. 56. doi: 10.1016/j.smim.2021.101542
- Hajishengallis G., Netea M.G., Chavakis T. Innate immune memory, trained immunity and nomenclature clarification // Nat. Immunol. 2023. V. 24. № 9. P. 1393–1394. doi: 10.1038/s41590-023-01595-x
- Kaufmann E., Sanz J., Dunn J.L. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis // Cell. 2018. V. 172. № 1–2. P. 176–190. doi: 10.1016/j.cell.2017.12.031
- Verma D., Parasa V.R., Raffetseder J. et al. Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects // Sci. Rep. 2017. V. 7. № 1. P. 12305. doi: 10.1038/s41598-017-12110-2
- Singh S., Saavedra-Avila N.A., Tiwari S., Porcelli S.A. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19 // Front. Immunol. 2022. V. 13. doi: 10.3389/fimmu.2022.959656
- Murphy D.M., Mills K.H.G., Basdeo S.A. The effects of trained innate immunity on T cell responses; clinical implications and knowledge gaps for future research // Front. Immunol. 2021. V. 12. doi: 10.3389/fimmu.2021.706583
- Wang Y., Ge F., Wang J. et al. Mycobacterium bovis BCG given at birth followed by inactivated respiratory syncytial virus vaccine prevents vaccine-enhanced disease by promoting trained macrophages and resident memory T cells // J. Virol. 2023. V. 97. № 3. doi: 10.1128/jvi.01764-22
- Blok B.A., Arts R.J.W., van Crevel R. et al. Differential effects of BCG vaccine on immune responses induced by vi polysaccharide typhoid fever vaccination: an explorative randomized trial // Eur. J. Clin. Microbiol. Infect. Dis. 2020. V. 39. № 6. P. 1177–1184. doi: 10.1007/s10096-020-03813-y
- Gillard J., Blok B.A., Garza D.R. et al. BCG-induced trained immunity enhances acellular pertussis vaccination responses in an explorative randomized clinical trial // NPJ Vaccines. 2022. V. 7. № 1. P. 21. doi: 10.1038/s41541-022-00438-4
- Kleinnijenhuis J., Quintin J., Preijers F. et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity // J. Innate. Immun. 2014. V. 6. № 2. P. 152–158. doi: 10.1159/000355628
- Moorlag S.J., Folkman L., Ter Horst R. et al. Multi-omics analysis of innate and adaptive responses to BCG vaccination reveals epigenetic cell states that predict trained immunity // Immunity. 2024. V. 57. № 1. P. 171–187. doi: 10.1016/j.immuni.2023.12.005
- Joseph J. Trained immunity as a prospective tool against emerging respiratory pathogens // Vaccines. 2022. V. 10. № 11. doi: 10.3390/vaccines10111932
- Chen J., Gao L., Wu X. et al. BCG-induced trained immunity: History, mechanisms and potential applications // J. Transl. Med. 2023. V. 21. № 1. P. 106. doi: 10.1186/s12967-023-03944-8
- O'Neill L.A.J., Netea M.G. BCG-induced trained immunity: Can it offer protection against COVID-19? // Nat. Rev. Immunol. 2020. V. 20. № 6. P. 335–337. doi: 10.1038/s41577-020-0337-y
- Neumann G., Kawaoka Y. Which virus will cause the next pandemic? // Viruses. 2023. V. 15. № 1. doi: 10.3390/v15010199
- He Y., Liu W.J., Jia N. et al. Viral respiratory infections in a rapidly changing climate: The need to prepare for the next pandemic // EBioMedicine. 2023. V. 93. doi: 10.1016/j.ebiom.2023.104593
- Piret J., Boivin G. The impact of trained immunity in respiratory viral infections // Rev. Med. Virol. 2024. V. 34. № 1. doi: 10.1002/rmv.2510
- Zhu J., Liu J., Yan C. et al. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? // Front. Immunol. 2023. V. 14. doi: 10.3389/fimmu.2023.1252554
- Гладков О., Зуков Р., Матвеев В. et al. Практические рекомендации по лекарственному лечению рака мочевого пузыря // Злокачественные опухоли. 2022. V. 12. № 3S2-1. P. 589–606. doi: 10.18027/2224-5057-2022-12-3s2-589-606
- Kaur G., Singh S., Nanda S. et al. Fiction and facts about bcg imparting trained immunity against COVID-19 // Vaccines. 2022. V. 10. № 7. doi: 10.3390/vaccines10071006
- Chen J., Gao L., Wu X. et al. BCG-induced trained immunity: history, mechanisms and potential applications // J. of Transplational Medicine. 2023. V. 21. № 1. P. 106. doi: 10.1186/s12967-023-03944-8
- Коняшкина С.Ю., Рева С., Петров С. Лабораторные предикторы ответа на внутрипузырную БЦЖ-терапию у пациентов с немышечно-инвазивным раком мочевого пузыря // Вестник урологии. 2022. T. 10. № 4. P. 155–164. doi: 0.21886/2308-6424-2022-10-4-155-164
- Jiang S., Redelman-Sidi G. BCG in bladder cancer immunotherapy // Cancers (Basel). 2022. V. 14. № 13. doi: 10.3390/cancers14133073
- Pshennikova E., Voronina A. Dormancy: There and back again // Mol. Biology. 2022. V. 56. № 5. P. 735–755. doi: 10.1134/S0026893322050119
- De Araujo A., Mambelli F., Sanches R.O. et al. Current understanding of bacillus calmette-guerin-mediated trained immunity and its perspectives for controlling intracellular infections // Pathogens. 2023. V. 12. № 12. doi: 10.3390/pathogens12121386
- Ziogas A., Bruno M., van der Meel R. et al. Trained immunity: Target for prophylaxis and therapy // Cell Host Microbe. 2023. V. 31. № 11. P. 1776–1791. doi: 10.1016/j.chom.2023.10.015
- Dominguez-Andres J., Dos Santos J.C., Bekkering S. et al. Trained immunity: Adaptation within innate immune mechanisms // Physiol. Rev. 2023. V. 103. № 1. P. 313–346. doi: 10.1152/physrev.00031.2021
- Chapman R., Bourn W.R., Shephard E. et al. The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen // PLoS One. 2014. V. 9. № 7. doi: 10.1371/journal.pone.0103314
- Kim B.J., Kim B.R., Kook Y.H., Kim B.J. Development of a live recombinant BCG expressing Human Immunodeficiency Virus Type 1 (HIV-1) Gag using a pMyong2 vector system: potential use as a novel HIV-1 vaccine // Front. Immunol. 2018. V. 9. doi: 10.3389/fimmu.2018.00643
- Kilpelainen A., Saubi N., Guitart N. et al. Recombinant BCG expressing HTI prime and recombinant ChAdOx1 boost is safe and elicits HIV-1-specific T-Cell responses in BALB/c mice // Vaccines (Basel). 2019. V. 7. № 3. P. 78. doi: 10.3390/vaccines7030078
- Gupta P.K. New disease old vaccine: Is recombinant BCG vaccine an answer for COVID-19? // Cell Immunol. 2020. V. 356. doi: 10.1016/j.cellimm.2020.104187
- Peng X., Zhou Y., Zhang B. et al. Mucosal recombinant BCG vaccine induces lung-resident memory macrophages and enhances trained immunity via mTORC2/HK1-mediated metabolic rewiring // J. Biol. Chem. 2024. V. 300. № 1. doi: 10.1016/j.jbc.2023.105518
Supplementary files
