Markers Nomenclature and Type I and II Errors Control in Cattle Parentage Exclusion Expertise with Microsatellite Markers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Erroneous pedigree records reduce the quality of breeding work with cattle; therefore, parentage exclusion expertise has become an integral part of breeding work. For many years on the territory of the Russian Federation, the expertise was carried out using immunogenetic markers, but the improvement of technologies and tightening of regulatory requirements has led to the process of replacement of immunogenetics by microsatellite markers. At present there is no domestic protocol clearly regulating the procedure of cattle parentage exclusion expertise using microsatellite loci, which makes laboratory work more difficult. In particular, the requirements for the number and nomenclature of genetic markers which are used in the genetic expertise are only available for cattle, embryos and semen products being transported across the Eurasian Economic Union. There are no regulations for errors I (false positives) and II (false negatives) types control, which must be taken into account when forming expert judgements. In this paper we will review the approaches to addressing these issues proposed by the International Society for Animal Genetics (ISAG), the International Committee for Animal Recording (ICAR), the Collegium of the Eurasian Economic Commission, as well as domestic regulatory documents governing the production of forensic medical tests related to parentage exclusion expertise. Based on the results of the review, a nomenclature of microsatellite markers and a parentage exclusion protocol will be proposed, in which errors I and II type control are carried out. Special attention will be paid to the description of the sources of II type error and the necessity of its control.

Full Text

Restricted Access

About the authors

M. V. Modorov

Ural Federal Agrarian Scientific Research Center, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: mmodorov@gmail.com
Russian Federation, Yekaterinburg, 620142

I. V. Tkachenko

Ural Federal Agrarian Scientific Research Center, Ural Branch, Russian Academy of Sciences

Email: mmodorov@gmail.com
Russian Federation, Yekaterinburg, 620142

A. A. Kleshcheva

Ural Federal Agrarian Scientific Research Center, Ural Branch, Russian Academy of Sciences

Email: mmodorov@gmail.com
Russian Federation, Yekaterinburg, 620142

M. Yu. Sevost'yanov

Ural Federal Agrarian Scientific Research Center, Ural Branch, Russian Academy of Sciences

Email: mmodorov@gmail.com
Russian Federation, Yekaterinburg, 620142

References

  1. Методические рекомендации по исследованию и использованию групп крови в селекции крупного рогатого скота. Дубровицы.: Отдел научно-техн. информации, 1974. 40 с.
  2. Лазарева Ф.Ф., Сухова Л.Г. Использование групп крови для подтверждения достоверности происхождения крупного рогатого скота // Тр. УралНИИСХОЗА. 1983. Т. 35. С. 8–14.
  3. ISAG/FAO. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans. Measurement of Domestic Animal Diversity (MoDAD): Recommended Microsatellite Markers. FAO. Italy, Rome: 2004.
  4. FAO. Molecular Genetic Characterization of Animal Genetic Resources. FAO. Italy, Rome: 2011.
  5. ISAG Conference 2006. Cattle Molecular Markers and Parentage Testing Workshop. [Электронный ресурс] URL: https://www.isag.us/Docs/ISAG2006_CMMPT.pdf (дата обращения: 02.04.2024).
  6. ISAG Conference 2008. Cattle Molecular Markers and Parentage Testing Workshop. [Электронный ресурс] URL: https://www.isag.us/Docs/ISAG2008_CattleParentage.pdf (дата обращения: 02.04.2024).
  7. ISAG 2021. Cattle Molecular Markers and Parentage Testing. [Электронный ресурс] URL: https://www.isag.us/Docs/Workshop_report_CMMPT_2021.pdf (дата обращения: 02.04.2024).
  8. ICAR guidelines. Section 4 – DNA technology. Version: February 2022. [Электронный ресурс] URL: https://www.icar.org/Guidelines/04-DNA-Technology.pdf (дата обращения 02.04.2024).
  9. Решение Коллегии Евразийской экономической комиссии от 2 июня 2020 г. № 74 “Об утверждении Положения о проведении молекулярной генетической экспертизы племенной продукции государств – членов Евразийского экономического союза” [Электронный ресурс] URL: https://www.garant.ru/products/ipo/prime/doc/74125607 (дата обращения 02.04.2024).
  10. Приказ Министерства сельского хозяйства Российской Федерации от 02.06.2022 № 336 “Об утверждении требований к видам племенных хозяйств” [Электронный ресурс] URL: http://publication.pravo.gov.ru/Document/View/0001202208300022 (дата обращения 02.04.2024).
  11. Приказ Министерства здравоохранения и социального развития РФ от 12 мая 2010 г. № 346н “Об утверждении Порядка организации и производства судебно-медицинских экспертиз в государственных судебно-экспертных учреждениях Российской Федерации” [Электронный ресурс] URL: https://base.garant.ru/12177987/ (дата обращения 02.04.2024).
  12. Приказ Министерства здравоохранения Российской Федерации от 25.09.2023 № 491н “Об утверждении Порядка проведения судебно-медицинской экспертизы” [Электронный ресурс] URL: http://publication.pravo.gov.ru/docu-ment/0001202310250009 (дата обращения 02.04.2024).
  13. Методические указания Минздрава РФ № 98/253 от 19.01.1999 года “Использование индивидуализирующих систем на основе полиморфизма длины амплифицированных фрагментов (ПДАФ) ДНК в судебно-медицинской экспертизе идентификации личности и установления родства” [Электронный ресурс] URL: https://docs.cntd.ru/document/556354310 (дата обращения 02.04.2024).
  14. Животовский Л.А. Критические замечания на “Методические указания” П.Л. Иванова “Использование индивидуализирующих систем на основе полиморфизма длины амплифицированных фрагментов (ПДАФ) ДНК в судебно-медицинской экспертизе идентификации личности и установления родства” // Сиб. мед. журн.”. 2001. № 2. С. 85–86.
  15. Пименов М.Г., Культин А.Ю., Кондрашов С.А. Научные и практические аспекты криминалистического ДНК-анализа: Учебное пособие. М.: ГУ ЭКЦ МВД России, 2001. 144 с.
  16. ISAG. Exclusion probability in parentage tests [Электронный ресурс] URL: https://www.isag.us/Docs/consignmentforms/Exclusion_probability.pdf (дата обращения 02.04.2024).
  17. Jamieson A., Taylor St.C.S. Comparisons of three probability formulae for parentage exclusion // Animal Genetics. 1997. V. 28. P. 397–400. doi: 10.1111/j.1365-2052.1997.00186.x
  18. Хедрик Ф. Генетика популяций. М.: Техносфера, 2003. 592 с. (Hedrick P.W. Genetics of population. Jones and Barlet Publ., Inc., 1999.)
  19. Peakall R., Smouse P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Notes. 2006. V. 6. № 1. P. 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  20. Модоров М.В., Ткаченко И.В., Грин А.А. и др. Генетическая структура популяции голштинизированного черно-пестрого скота на территории Урала // Генетика. 2021. Т. 57. № 4. С. 437–444. https://doi.org/10.1134/S1022795421040104
  21. Van de Goor L.H.P., Koskinen M.T., van Haeringen W.A. Population studies of 16 bovine STR loci for forensic purposes // Int. J. Legal Med. 2011. V. 125. P. 111–119. doi: 10.1007/s00414-009-0353-8
  22. Steely C.J., Scot Watkins W., Baird L., Jorde L.B. The mutational dynamics of short tandem repeats in large, multigenerational families // Genome Biology. 2022. V. 23. Article number: 253. https://doi.org/10.1186/s13059-022-02818-4
  23. COrDIS Cattle. Набор реагентов для мультиплексного анализа 15-ти микросателлитных маркеров крупного рогатого скота [Электронный ресурс] URL: https://gordiz.ru/wp-content/uploads/2023/12/instrukcziya-cordis-cattle-231205.pdf (дата обращения 02.04.2024).
  24. Набор “Gene Profile Cattle” для генетической паспортизации и определения родства крупного рогатого скота [Электронный ресурс] URL: https://www.syntol.ru/catalog/reagenty-dlya-geneticheskikh-analizatorov/geneprofile-cattle.html (дата обращения 02.04.2024).
  25. Kozubska-Sobocińska A., Smołucha G., Danielak-Czech B. Early diagnostics of freemartinism in Polish Holstein-Friesian female calves // Animals. 2019. V. 9. № 11. Article number: 971. doi: 10.3390/ani9110971
  26. Модоров М.В., Файрушина К.Р., Клещева А.А. и др. Воспроизводство племенного голштинизированного черно-пестрого скота в Свердловской области // Достижения науки и техники АПК. 2022. Т. 36. № 8. С. 67–71. doi: 10.53859/02352451_2022_36_8_67

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Hypothetical example of type II errors (false negative conclusion about the origin of the offspring from the declared parents) associated with the presence of mutations in the DNA sequence complementary to the primer sequence. In the first test, when determining the genotype of the bull (♂), cow (♀) and offspring (F1), reagent kit “a” was used, which includes a primer, at the site of complementary binding of which to the DNA matrix a mutation occurred in the bull (shown by the arrow). As a result of the mutation, a fragment of 66 bp is not amplified (null allele). The bull's genotype, designated by the number of motifs in the fragment, will be read as “10 / 10” (homozygote), although in fact its genotype is “8 / 10” (heterozygote). The cow's genotype using this reagent kit is read without errors “4 / 12”. The offspring inherits the bull's allele "8" and the cow's allele "4". When decoding the offspring's genotype with the same reagent set, the genotype "4/4" is read, since the "8" allele is not amplified due to a mutation at the site of complementary binding of the primer to the DNA matrix (variant F1a). The resulting data allow us to conclude that the bull and offspring do not have common alleles at this locus. Another laboratory used the genetic passports of the parents, and analyzed the offspring's genotype using another reagent set "b". In reagent set "b" for analyzing this locus, the developers included other primers complementary to other sequences of the matrix DNA, as a result of which both alleles "4" and "8" (F1ᵇ) are read in the offspring. However, in this situation, a conclusion will be made about the absence of common alleles at this locus in the bull and the offspring.

Download (745KB)
3. Fig. 2. Results of fragment analysis performed using the COrDIS Cattle reagent kit. a – alleged mother (dizygotic twin with chimeric blood cells); b – tested offspring (singleton pregnancy). For each fragment of the offspring, it is possible to select a fragment present in the alleged mother, but at many loci the offspring inherited an allele whose fragment height in the mother was relatively low (such alleles are shown by red arrows).

Download (592KB)

Copyright (c) 2024 Russian Academy of Sciences