Genetic Variability of the Laxmann’s Shrew (Sorex caecutiens Laxmann, 1788) of the Kolyma River Basin and Chukotka

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nucleotide sequence polymorphism and haplotypic diversity of the cytochrome b gene were studied in samples of the Laxmann’s Shrew Sorex caecutiens koreni from the populations of the Kolyma River basin and Chukotka. 56 cytb-haplotypes differing among themselves by 87 mutations in 84 sites were found. The cytb-haplotypes of individuals of the subspecies S. c. koreni and S. c. macropygmaeus were shown to belong to the same maternal mtDNA lineage, their monophyletic origin from the same ancestral haplotype Scb1, and the presence of identical cytb-haplotypes in both subspecies. The mutual isolation of the shrew populations in the upper basin of the Kolyma River and Chukotka is shown. The proportion of intrapopulation genetic variability is 95.74%, intergroup variability is 5.74%, and intragroup variability is –1.48%, which reflects a very high level of intrapopulation variability of cytb haplotypes in the studied groups of S. c. koreni, their monophyletic origin, and the genetic unity of the Chukchi samples. The values of molecular diversity indices testify to the stability of populations that have a high value of effective abundance for a long time.

Full Text

Restricted Access

About the authors

V. V. Pereverzeva

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: vvpereverzeva@mail.ru
Russian Federation, Magadan

N. E. Dokuchaev

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Email: vvpereverzeva@mail.ru
Russian Federation, Magadan

A. A. Primak

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Email: vvpereverzeva@mail.ru
Russian Federation, Magadan

E. A. Dubinin

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Email: vvpereverzeva@mail.ru
Russian Federation, Magadan

References

  1. Чернявский Ф.Б. Млекопитающие крайнего северо-востока Сибири. М.: Наука, 1984. 389 с.
  2. Юдин Б.С. Насекомоядные млекопитающие Сибири. Новосибирск: Наука, 1989. 360 с.
  3. Докучаев Н.Е. Сравнительный анализ двух подвидовых форм средней бурозубки материковой части Северо-Восточной Азии // Эволюционные и генетические исследования млекопитающих. Тез. докл. Всесоюзн. совещ. (Владивосток, 22–28 сентября 1990 г.). Владивосток: ДВО АН СССР, 1990б. Ч. 2. С. 80–82.
  4. Охотина М.В. Подвидовая таксономическая ревизия дальневосточных бурозубок (Insectivora, Sorex) с описанием новых подвидов // Вопр. систематики, фаунистики и палеонтологии мелких млекопитающих. Тр. Зооло. ин-та АН СССР. Т. 243. 1991. СПб.: Издательство Академии наук СССР. С. 58–70.
  5. Докучаев Н.Е. Экология бурозубок Северо-Восточной Азии. М.: Наука, 1990а. 160 с.
  6. Григорьева О.О., Борисов Ю.М., Стахеев В.В. и др. Генетическая структура популяций обыкновенной бурозубки Sorex araneus L. 1758 (Mammalia, Lipotyphla) на сплошных и фрагментированных участках ареала // Генетика. 2015. Т. 51. № 6. С. 711–723. https://doi.org/10.7868/S0016675815030042
  7. Ковалева В.Ю., Литвинов Ю.Н., Ефимов В.М. Землеройки (Soricidae, Eulipotyphla) Сибири и Дальнего Востока: комбинирование и поиск конгруэнтности молекулярно–генетических и морфологических данных // Зоологический журнал. 2013. Т. 92. № 11. С. 1383–1398. https://doi.org/10.7868/S0044513413110081
  8. Ohdachi S., Masuda R., Abe H. et al. Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences // Zool. Sci. 1997. V. 14. P. 527–532.
  9. Ohdachi S.D., Dokuchaev N.E., Hasegawa M., Masuda R. Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences // Mol. Ecology. 2001. V. 10. P. 2199–2213. https://doi.org/10.1046/j.1365-294x.2001.01359.x
  10. Ohdachi S.D., Abe H., Han S.H. Phylogenetic positions of Sorex sp. (Insectivora, Mammalia) from Cheju Island and S. caecutiens from the Korean Peninsula, inferred from mitochondrial cytochrome b gene sequences // Zool. Sci. 2003. V. 20. P. 91–95. https://doi.org/10.2108/zsj.20.91
  11. Ohdachi S.D., Yoshizawa K., Hanski I. et al. Intraspecific phylogeny and nucleotide diversity of the least shrews, the Sorex minutissimus–S. yukonicus complex, based on nucleotide sequences of the mitochondrial cytochrome b gene and the control region // Mammal Study. 2012. V. 37. P. 281–297. https://doi.org/10.3106/041.037.0403
  12. Demboski J.R., Cook J.A. Phylogenetic diversification within the Sorex cinereus group (Soricidae) // J. Mammalogy. 2003. V. 84. № 1. Р. 144–158. https://doi.org/10.1644/1545-1542(2003)084<0144:PDWTSC>2.0.CO;2
  13. Bannikova A.A., Dokuchaev N.E., Yudina E.V. et al. Holarctic phylogeography of the tundra shrew (Sorex tundrensis) based on mitochondrial genes // Biol. J. of the Linnean Society. 2010. V. 101. № 3. P. 721–746. https://doi.org/10.1111/j.1095-8312.2010.01510.x
  14. Bannikova A.A., Chernetskaya D.M., Raspopova A.A. et al. Evolutionary history of the genus Sorex as inferred from multigene data and molecular clock of major divergence events with the implications for systematics // Zool. Scripta. 2018. V. 47. № 5. P. 518–538. https://doi.org/10.1111/zsc.12302
  15. Esteva M., Cervantes F.A., Brant S.V., Cook J.A. Molecular phylogeny of long-tailed shrews (genus Sorex) from México and Guatemala // Zootaxa. 2010. V. 2615. № 1. Р. 47–65. https://doi.org/10.11646/zootaxa.2615.1.3
  16. Koh H.S., Jang K.H., In S.T. et al. Genetic distinctness of Sorex caecutiens hallamontanus (Soricomorpha: Mammalia) from Jeju island in Korea: Cytochrome oxidase I and cytochrome b sequence analyses // Anim. Syst. Evol. Divers. 2012. V. 28. №. 3. P. 215–219. https://doi.org/10.5635/ASED.2012.28.3.215
  17. Переверзева В.В., Докучаев Н.Е., Примак А.А., Киселев С.В. Генетическая изменчивость средней бурозубки (Sorex caecutiens Laxmann, 1788) Северного Приохотья // Вестник СВНЦ ДВО РАН. 2019. № 1. С. 103–115.
  18. Jin Z-M., Zhu L., Ma J-Z. Sequencing and analysis of the complete mitochondrial genome of the masked shrew (Sorex caecutiens) from China // Mitochondrial DNA. Part B. 2017. V. 2. №. 2. P. 486–488.
  19. Tamura K., Stecher G., Peterson D. et al. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0 // Mol. Biol. Evol. 2013. V. 30. P. 2725–2729. https://doi.org/10.1093/molbev/mst197
  20. Excoffier L., Laval G., Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis // Evol. Bioinformatics Online. 2005. V. 1. P. 47–50.
  21. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism // Gen. Soc. Am. 1989. V. 123. P. 585–595.
  22. Fu Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection // Genetics. 1997. V. 147. P. 915–925. https://doi.org/10.1093/genetics/147.2.915
  23. Bandelt H.J., Forster P., Rőhl A. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. 1999. V. 16. P. 37–48.
  24. Nei M. Molecular Evolutionary Genetics. N. Y.: Columbia Univ. Press, 1987. 495 р.
  25. Nei M., Kumar S. Molecular evolution and phylogenetic. N.Y.: Oxford Univ. Press, 2000. 333 p.
  26. Zardoya R., Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates // Mol. Biol. Evol. 1996. V. 13. № 7. P. 933–942.
  27. Hassanin A., Lecointre G., Tiller S. Related articles, links abstract. The “evolutionary signal” of homoplasy in protein-coding gene sequences and its consequences for a priori weighting in phylogeny // C. R. Acad. Sci. 1998. V. 321. № 7. Р. 611–620.
  28. Абрамсон Н.И. Филогеография: итоги, проблемы, перспективы // Вестник ВОГиС. 2007. Т. 11. № 2. С. 307–331.
  29. Докучаев Н.Е. Роль Берингийской суши в расселении и образовании новых форм у землероек-бурозубок // Вестник ДВО РАН. 1997. № 2. С. 54–61.
  30. Докучаев Н.Е., Гуляев В.Д. Четвертичная история землероек-бурозубок Северо-Восточной Азии в свете гельминтологических данных // Биология насекомоядных млекопитающих. Мат. III всерос. науч. конф. по биологии насекомоядных млекопитающих (15–20 сентября 2007 г., Новосибирск). Новосибирск: Изд-во “ЦЭРИС”, 2007. С. 38–40.
  31. Переверзева В.В., Примак А.А., Дубинин Е.А. Филогенетические отношения популяций красной полевки Myodes (=Clethrionomys) rutilus Pallas, 1779 Северного Приохотья и Колымского региона // Вавиловский журнал генетики и селекции. 2013. Т. 17. № 3. С. 444–451.
  32. Переверзева В.В., Примак А.А., Докучаев Н.Е. и др. Изменчивость гена цитохрома b мтДНК красно-серой полевки (Craseomys rufocanus Sundevall, 1846) Северного Приохотья и бассейна р. Колыма // Вестник СВНЦ ДВО РАН. 2018. № 1. С. 101–112.
  33. Переверзева В.В., Докучаев Н.Е., Примак А.А. и др. Изменчивость гена цитохрома b мтДНК полевки-экономки (Alexandromys oeconomus Pallas, 1776) Северного Охотоморья // Усп. совр. биологии. 2022. Т. 142. № 1. С. 90–104. https://doi.org/10.31857/0042132422010057 (0042-1324 ISSN).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map-scheme of sampling sites of the Middle Storm-Petrel subspecies S. c. koreni. Numbers indicate: river basins 1 - Kulu, 2 - Detrin, 3 - Srednekan; 4 - vicinity of Urultun, Malyk and Momontai lakes; 5 - basin of Omolon river; 6 - vicinity of Anadyr

Download (163KB)
3. Fig. 2. Haplotypes of the cytochrome b gene of the medium rodent S. c. koreni from the populations of the upper Kolyma and Chukotka. Nucleotide substitutions are presented relative to the sequence of the Scb1 variant. The substitution sites are shown from the beginning of the cytochrome b gene

Download (1024KB)
4. Fig. 3. Fraction of haplotypes of the cytochrome b gene in samples of the medium-sized rodent S. c. koreni from the populations of the upper Kolyma and Chukotka rivers

Download (317KB)
5. Fig. 4. Median network of haplotypes of the cytochrome b gene of the medium rodent S. c. koreni from the populations of the upper Kolyma and Chukotka. The size of circles is proportional to the share of mtDNA variant. * - transit in the 1st codon position, ** - transit in the 2nd codon position, # - transversion in the 1st codon position, ### - transversion in the 3rd codon position. Numbers denote mutation sites from the beginning of cytochrome b gene; mv - median vector

Download (451KB)

Copyright (c) 2024 Russian Academy of Sciences