Analysis of the Effectiveness of Crispr-Editing of the GEX2 Gene by Ribonucleoprotein Complexses in Maize Protoplasts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The GEX2 protein is expressed in the maize gamete membranes and necessary for gamete membranes contact (adhesion). Knockout of GEX2 gene, presumably, can lead to impaired fertilization and, as a result, to the haploid embryo formation. The aim of the study is to analyze the efficiency of CRISPR/Cas9 editing of the GEX2 gene after PEG-mediated transfection of maize protoplasts by ribonucleoprotein (RNP) complexes with different sgRNA. For the first time, the RNP complexes with different sgRNA to the GEX2 gene have been created. The effectiveness of CRISPR/Cas9 editing of the GEX2 gene have been proven on protoplasts and reaches 10.7%, depending on the sgRNA, level and thesgRNA:Cas9 ratio in the RNP complex.

Full Text

Restricted Access

About the authors

E. M. Moiseeva

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences

Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049

V. V. Fadeev

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences; Chernyshevsky Saratov National Research State University

Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049; Saratov, 410012

Y. V. Fadeeva

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences; Chernyshevsky Saratov National Research State University

Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049; Saratov, 410012

Y. S. Gusev

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences; Chernyshevsky Saratov National Research State University

Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049; Saratov, 410012

M. I. Chumakov

Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences

Author for correspondence.
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049

References

  1. Чумаков М.И., Гусев Ю.С., Богатырева Н.В., Соколов А.Ю. Оценка рисков распространения генетически модифицированной кукурузы с пыльцой при выращивании с нетрансформированными сортами (обзор) // С-хоз. биология. 2019. Т. 54. № 3. С. 426−445. https://doi.org/10.15389/agrobiology.2019.3.426rus
  2. Chase S.S. Monoploid frequencies in a commercial double cross hybrid maize, and its component single cross hybrids and inbred lines // Genetics. 1949. V. 34. № 4. P. 384–392. https://doi.org/10.1134/S1022795422040044
  3. Coe E.H. A line of maize with high haploid frequency // Am. Naturalist. 1959. V. 93. № 873. P. 381–382. https://doi.org/10.1086/282098
  4. Чумаков М.И., Мазилов С.И. Генетический контроль гиногенеза у кукурузы (обзор) // Генетика. 2022. Т. 58. № 4. С. 388–397. https://doi.org/10.1134/S1022795422040044 .
  5. Kelliher T., Starr D., Wang W. et al. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize // Front. Plant Sci. 2016. V. 7. P. 414. https://doi.org/10.3389/fpls.2016.00414
  6. Kelliher T., Starr D., Richbourg L. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction // Nature. 2017. V. 542. P. 105−109. https://doi.org/10.1038/nature20827
  7. Gilles L.M., Khaled A., Laffaire J.B. et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize // EMBO J. 2017. https://doi.org/10.15252/embj.201796603
  8. Liu C., Li X., Meng D. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a gene rates haploid induction in maize // Mol. Plant. 2017. V. 10. P. 520−522. https://doi.org/10.1016/j.molp.2017.01.011
  9. Чумаков М.И. Матроклинная гаплоидия и взаимодействие гамет у кукурузы (обзор) // Генетика. 2018. Т. 54 № 10. C. 1120–1124. https://doi.org/10.1134/S1022795418100058
  10. Mori H. Kuroiwa T., Kranz E., Scholten S. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization // Nat. Cell Biol. 2006. V. 8. P. 64−71. https://doi.org/10.1038/ncb1345
  11. Besser V.K., Frank A.C., Johnson M.A., Preuss D. Arabidopsis HAP2(GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization // Development. 2006. V. 133. P. 4761−4769. https://doi.org/10.1242/dev.02683
  12. Mori T., Igawa T., Tamiya G. et al. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis // Curr. Biol. 2014. V. 24. P. 170−175. https://doi.org/10.1016/j.cub.2013.11.030
  13. Takahashi T., Mori T., Ueda K. et al. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants // Development. 2018. V. 45. dev170076. doi: 10.1242/dev.170076
  14. Zhong Y., Liu C., Qi X. et al. Mutation of ZmDMP enhances haploid induction in maize // Nat. Plants. 2019. V. 5. P. 575–580. https://doi.org/10.1038/s41477-019-0443-7
  15. Paszkowski J., Baur M., Bogucki A., Potrykus I. Gene targeting in plants // The EMBO J. 1988. V. 7. № 13. P. 4021−4026. https://doi.org/10.1002/j.1460-2075.1988.tb03295.x
  16. Banakar R., Eggenberger A.L., Lee K. et al. High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice // Sci. Rep. 2019. V. 9. № 1. P. 19902. https://doi.org/10.1038/s41598-019-55681-y
  17. Sandhya D., Jogam P., Allini V.R. et al. The present and potential future methods for delivering CRISPR/Cas9 components in plant // J. Genet. Eng. Biotechnol. 2020. V. 18. P. 25. https://doi.org/10.1186/s43141-020-00036-8
  18. Богатырева Н.В., Соколов А.Ю., Моисеева Е.М. и др. Правовое положение растений, полученных с использованием технологии редактирования генома: перспективы для России // Экологическая генетика. 2021. Т. 19. № 1. С. 89−101. https://doi.org/10.17816/ecogen42532
  19. Cho S.W., Lee J., Carroll D. et al. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9–sgRNA ribonucleoproteins // Genetics. 2013. V. 195. P. 1177−1180. https://doi.org/10.1534/genetics.113.155853
  20. Woo J.W., Kim J., Kwon S. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins // Nat. Biotechnology. 2015. V. 33. № 11. P. 1162−1164. https://doi.org/10.1038/nbt.3389
  21. Liang Z., Chen K., Li T. et al. Efficient DNA‐free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes // Nat Com. 2017. V. 8. P. 14261. https://doi.org/10.1038/ncomms14261
  22. De Witt M.A., Corn J.E., Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein // Methods. 2017. V. 121−122. P. 9−15. https://doi.org/10.1016/j.ymeth.2017.04.003
  23. Svitashev S., Schwartz C., Lenderts B. et al. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes // Nat. Com. 2016. V. 7. P. 13274. https://doi.org/10.1038/ncomms14261
  24. Кулуев Б.Р., Гумерова Г.Р., Михайлова Е.В. и др. Доставка CRISPR/CAS-компонентов в клетки высших растений для редактирования их геномов // Физиол. растений. 2019. Т. 66. № 5. С. 339−353. https://doi.org/10.1134/S0015330319050117
  25. Kanchiswamy C.N. DNA-free genome editing methods for targeted crop improvement // Plant Cell Rep. 2016. V. 35. P. 1469−1474. https://doi.org/10.1007/s00299-016-1982-2
  26. Chase S.S. Monoploids and monoploid-derivatives of maize (Zea mays L.) // The Bot. Review. 1969. V. 35. № 2. P. 117−168. https://doi.org/10.1007/BF02858912
  27. Wolter F., Edelmann S., Kadri A., Scholten S. Characterization of paired Cas9 nickases induced mutations in maize mesophyll protoplasts // Maydica. 2018. V. 62. № 2. P. 1−11.
  28. Красова Ю.В., Фадеев В.В., Моисеева Е.М. и др. Оптимизация методики получения протопластов кукурузы и их нативность после электропорации// Изв. Саратовского у-та. Серия: Химия. Биология. Экология. 2022. Т. 22. Вып. 4. С. 445−454. https://doi.org/10.18500/1816-9775-2022-22-4-445-454
  29. Mekler V., Minakhin L., Semenova E. et al. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3’-terminal segment of guide RNA // Nucl. Ac. Res. 2016. V. 44. № 6. P. 2837−2845. https://doi.org/10.1093/nar/gkw138
  30. Sant’Ana R.R.A., Caprestano C.A., Nodari R.O., Agapito-Tenfen S.Z. PEG-delivered CRISPR-Cas9 ribonucleoproteins system for gene-editing screening of maize protoplasts // Genes. 2020. V. 11. P. 1029−1043. https://doi.org/10.3390/genes11091029
  31. Yoo S.D., Cho Y.H., Sheen J. Arabidopsis mesophyll protoplasts: А versatile cell system for transient gene expression analysis // Nature Protocols. 2007. V. 2. № 7. P. 1565−1572. https://doi.org/10.1038/nprot.2007.199
  32. Дрейпер Дж., Скотт Р., Армитидж Ф. и др. Генная инженерия растений. Лабораторное руководство. М.: Мир, 1991. 408 c.
  33. Shan Q., Wang Y., Li J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system // Nat. Biotechnol. 2013. V. 31. № 8. P. 686–688. https://doi.org/10.1038/nbt.2650
  34. Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis // Nat. Methods. 2012. V. 9. P. 671–675. https://doi.org/10.1038/nmeth.2089
  35. Sentmanat M.F., Peters S.T., Florian C.P. et al. A survey of validation strategies for CRISPR-Cas9 editing // Sci. Reports. 2018. V. 8. P. 888−895. https://doi.org/10.1038/s41598-018-19441-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evaluation of the effectiveness of RNP complexes in vitro and in corn protoplasts. a – nucleotide sequences of sections of the GEX2 gene containing protospacers for hydRNA 1, 2; target sites for hydRNA are highlighted in gray, FRAME sequences are black. b – electrophoresis of PCR products from a fragment of the GEX2 gene after treatment with RNP complexes in vitro; tracks: 1 - PCR product with a target locus for hydRNA 1 after incubation with an RNP complex; 2 – PCR product with a target locus for hydRNA 1 (without treatment); 3 - DNA molecular weight marker; 4 – PCR product with target locus for hydRNA 2 after incubation with RNP complex; 5 - PCR product with target locus for hydRNA 2 (without treatment). b – electrophoresis of PCR products with a target locus for hydRNA 2. Tracks: 1 – PCR product from a fragment of the GEX2 gene obtained from the DNA of corn protoplasts after transformation with RNP complexes (45 mg nuclease/15 mg hydRNA) and treated with BstMAI restrictase (expected band sizes after hydrolysis are 324 and 183

Download (238KB)

Copyright (c) 2024 Russian Academy of Sciences