Analysis of the Effectiveness of Crispr-Editing of the GEX2 Gene by Ribonucleoprotein Complexses in Maize Protoplasts
- Authors: Moiseeva E.M.1, Fadeev V.V.1,2, Fadeeva Y.V.1,2, Gusev Y.S.1,2, Chumakov M.I.1
-
Affiliations:
- Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences
- Chernyshevsky Saratov National Research State University
- Issue: Vol 60, No 6 (2024)
- Pages: 117-122
- Section: КРАТКИЕ СООБЩЕНИЯ
- URL: https://rjpbr.com/0016-6758/article/view/667257
- DOI: https://doi.org/10.31857/S0016675824060114
- EDN: https://elibrary.ru/BXNSRT
- ID: 667257
Cite item
Abstract
The GEX2 protein is expressed in the maize gamete membranes and necessary for gamete membranes contact (adhesion). Knockout of GEX2 gene, presumably, can lead to impaired fertilization and, as a result, to the haploid embryo formation. The aim of the study is to analyze the efficiency of CRISPR/Cas9 editing of the GEX2 gene after PEG-mediated transfection of maize protoplasts by ribonucleoprotein (RNP) complexes with different sgRNA. For the first time, the RNP complexes with different sgRNA to the GEX2 gene have been created. The effectiveness of CRISPR/Cas9 editing of the GEX2 gene have been proven on protoplasts and reaches 10.7%, depending on the sgRNA, level and thesgRNA:Cas9 ratio in the RNP complex.
Keywords
Full Text

About the authors
E. M. Moiseeva
Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049
V. V. Fadeev
Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences; Chernyshevsky Saratov National Research State University
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049; Saratov, 410012
Y. V. Fadeeva
Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences; Chernyshevsky Saratov National Research State University
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049; Saratov, 410012
Y. S. Gusev
Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences; Chernyshevsky Saratov National Research State University
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049; Saratov, 410012
M. I. Chumakov
Institute of Biochemistry and Physiology of Plants and Microorganisms – Subdivision of the Federal Research Center, Saratov Scientific Centre of the Russian Academy of Sciences
Author for correspondence.
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049
References
- Чумаков М.И., Гусев Ю.С., Богатырева Н.В., Соколов А.Ю. Оценка рисков распространения генетически модифицированной кукурузы с пыльцой при выращивании с нетрансформированными сортами (обзор) // С-хоз. биология. 2019. Т. 54. № 3. С. 426−445. https://doi.org/10.15389/agrobiology.2019.3.426rus
- Chase S.S. Monoploid frequencies in a commercial double cross hybrid maize, and its component single cross hybrids and inbred lines // Genetics. 1949. V. 34. № 4. P. 384–392. https://doi.org/10.1134/S1022795422040044
- Coe E.H. A line of maize with high haploid frequency // Am. Naturalist. 1959. V. 93. № 873. P. 381–382. https://doi.org/10.1086/282098
- Чумаков М.И., Мазилов С.И. Генетический контроль гиногенеза у кукурузы (обзор) // Генетика. 2022. Т. 58. № 4. С. 388–397. https://doi.org/10.1134/S1022795422040044 .
- Kelliher T., Starr D., Wang W. et al. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize // Front. Plant Sci. 2016. V. 7. P. 414. https://doi.org/10.3389/fpls.2016.00414
- Kelliher T., Starr D., Richbourg L. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction // Nature. 2017. V. 542. P. 105−109. https://doi.org/10.1038/nature20827
- Gilles L.M., Khaled A., Laffaire J.B. et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize // EMBO J. 2017. https://doi.org/10.15252/embj.201796603
- Liu C., Li X., Meng D. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a gene rates haploid induction in maize // Mol. Plant. 2017. V. 10. P. 520−522. https://doi.org/10.1016/j.molp.2017.01.011
- Чумаков М.И. Матроклинная гаплоидия и взаимодействие гамет у кукурузы (обзор) // Генетика. 2018. Т. 54 № 10. C. 1120–1124. https://doi.org/10.1134/S1022795418100058
- Mori H. Kuroiwa T., Kranz E., Scholten S. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization // Nat. Cell Biol. 2006. V. 8. P. 64−71. https://doi.org/10.1038/ncb1345
- Besser V.K., Frank A.C., Johnson M.A., Preuss D. Arabidopsis HAP2(GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization // Development. 2006. V. 133. P. 4761−4769. https://doi.org/10.1242/dev.02683
- Mori T., Igawa T., Tamiya G. et al. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis // Curr. Biol. 2014. V. 24. P. 170−175. https://doi.org/10.1016/j.cub.2013.11.030
- Takahashi T., Mori T., Ueda K. et al. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants // Development. 2018. V. 45. dev170076. doi: 10.1242/dev.170076
- Zhong Y., Liu C., Qi X. et al. Mutation of ZmDMP enhances haploid induction in maize // Nat. Plants. 2019. V. 5. P. 575–580. https://doi.org/10.1038/s41477-019-0443-7
- Paszkowski J., Baur M., Bogucki A., Potrykus I. Gene targeting in plants // The EMBO J. 1988. V. 7. № 13. P. 4021−4026. https://doi.org/10.1002/j.1460-2075.1988.tb03295.x
- Banakar R., Eggenberger A.L., Lee K. et al. High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice // Sci. Rep. 2019. V. 9. № 1. P. 19902. https://doi.org/10.1038/s41598-019-55681-y
- Sandhya D., Jogam P., Allini V.R. et al. The present and potential future methods for delivering CRISPR/Cas9 components in plant // J. Genet. Eng. Biotechnol. 2020. V. 18. P. 25. https://doi.org/10.1186/s43141-020-00036-8
- Богатырева Н.В., Соколов А.Ю., Моисеева Е.М. и др. Правовое положение растений, полученных с использованием технологии редактирования генома: перспективы для России // Экологическая генетика. 2021. Т. 19. № 1. С. 89−101. https://doi.org/10.17816/ecogen42532
- Cho S.W., Lee J., Carroll D. et al. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9–sgRNA ribonucleoproteins // Genetics. 2013. V. 195. P. 1177−1180. https://doi.org/10.1534/genetics.113.155853
- Woo J.W., Kim J., Kwon S. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins // Nat. Biotechnology. 2015. V. 33. № 11. P. 1162−1164. https://doi.org/10.1038/nbt.3389
- Liang Z., Chen K., Li T. et al. Efficient DNA‐free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes // Nat Com. 2017. V. 8. P. 14261. https://doi.org/10.1038/ncomms14261
- De Witt M.A., Corn J.E., Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein // Methods. 2017. V. 121−122. P. 9−15. https://doi.org/10.1016/j.ymeth.2017.04.003
- Svitashev S., Schwartz C., Lenderts B. et al. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes // Nat. Com. 2016. V. 7. P. 13274. https://doi.org/10.1038/ncomms14261
- Кулуев Б.Р., Гумерова Г.Р., Михайлова Е.В. и др. Доставка CRISPR/CAS-компонентов в клетки высших растений для редактирования их геномов // Физиол. растений. 2019. Т. 66. № 5. С. 339−353. https://doi.org/10.1134/S0015330319050117
- Kanchiswamy C.N. DNA-free genome editing methods for targeted crop improvement // Plant Cell Rep. 2016. V. 35. P. 1469−1474. https://doi.org/10.1007/s00299-016-1982-2
- Chase S.S. Monoploids and monoploid-derivatives of maize (Zea mays L.) // The Bot. Review. 1969. V. 35. № 2. P. 117−168. https://doi.org/10.1007/BF02858912
- Wolter F., Edelmann S., Kadri A., Scholten S. Characterization of paired Cas9 nickases induced mutations in maize mesophyll protoplasts // Maydica. 2018. V. 62. № 2. P. 1−11.
- Красова Ю.В., Фадеев В.В., Моисеева Е.М. и др. Оптимизация методики получения протопластов кукурузы и их нативность после электропорации// Изв. Саратовского у-та. Серия: Химия. Биология. Экология. 2022. Т. 22. Вып. 4. С. 445−454. https://doi.org/10.18500/1816-9775-2022-22-4-445-454
- Mekler V., Minakhin L., Semenova E. et al. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3’-terminal segment of guide RNA // Nucl. Ac. Res. 2016. V. 44. № 6. P. 2837−2845. https://doi.org/10.1093/nar/gkw138
- Sant’Ana R.R.A., Caprestano C.A., Nodari R.O., Agapito-Tenfen S.Z. PEG-delivered CRISPR-Cas9 ribonucleoproteins system for gene-editing screening of maize protoplasts // Genes. 2020. V. 11. P. 1029−1043. https://doi.org/10.3390/genes11091029
- Yoo S.D., Cho Y.H., Sheen J. Arabidopsis mesophyll protoplasts: А versatile cell system for transient gene expression analysis // Nature Protocols. 2007. V. 2. № 7. P. 1565−1572. https://doi.org/10.1038/nprot.2007.199
- Дрейпер Дж., Скотт Р., Армитидж Ф. и др. Генная инженерия растений. Лабораторное руководство. М.: Мир, 1991. 408 c.
- Shan Q., Wang Y., Li J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system // Nat. Biotechnol. 2013. V. 31. № 8. P. 686–688. https://doi.org/10.1038/nbt.2650
- Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis // Nat. Methods. 2012. V. 9. P. 671–675. https://doi.org/10.1038/nmeth.2089
- Sentmanat M.F., Peters S.T., Florian C.P. et al. A survey of validation strategies for CRISPR-Cas9 editing // Sci. Reports. 2018. V. 8. P. 888−895. https://doi.org/10.1038/s41598-018-19441-8
Supplementary files
