Novel Frameshift Variant of the MYBPC3 Gene Associated with Hypertrophic Cardiomyopathy Significantly Decreases the Level of This Gene’s Transcript in the Myocardium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease with a prevalence of 1 : 200–1 : 500 in the general population. The majority of HCM-linked pathogenic (or likely pathogenic) variants is located in eight genes encoding proteins of sarcomere, the main contractile unit of cardiomyocytes; one of these genes, MYBPC3, is the most commonly affected and usually associated with the more benign clinical course of the disease compared to other HCM-related genes. Here, we describe a novel frame shift variant NM_000256.3:c.2781_2782insCACA of the MYBPC3 gene that causes familial HCM in the heterozygous state. The proband had a progressive heart failure despite the surgical removal of left ventricular tract obstruction. Evaluation of levels of transcripts produced from the mutant allele and wild-type allele of the MYBPC3 gene in proband myocardial tissue and comparison of their total levels with ones in the control samples from patients without HCM showed a significant allele-specific reduction of mutant transcript levels. Our results expand the spectrum of known genetic variants with a proven role in the development of HCM.

Full Text

Restricted Access

About the authors

I. S. Kiselev

Chazov National Medical Research Centre of Cardiology

Email: kozinmax1992@gmail.com
Russian Federation, Moscow, 121552

M. S. Kozin

Chazov National Medical Research Centre of Cardiology

Author for correspondence.
Email: kozinmax1992@gmail.com
Russian Federation, Moscow, 121552

N. M. Baulina

Chazov National Medical Research Centre of Cardiology

Email: kozinmax1992@gmail.com
Russian Federation, Moscow, 121552

M. B. Sharipova

Regional Multidisciplinary Medical Сenter

Email: kozinmax1992@gmail.com
Uzbekistan, Bukhara, 200100

A. S. Zotov

Chazov National Medical Research Centre of Cardiology

Email: kozinmax1992@gmail.com
Russian Federation, Moscow, 121552

E. A. Stepanova

Russian Medical Academy of Continuous Professional Education

Email: kozinmax1992@gmail.com
Russian Federation, Moscow, 125993

E. V. Kurilina

Chazov National Medical Research Centre of Cardiology

Email: kozinmax1992@gmail.com
Russian Federation, Moscow, 121552

G. Zh. Abdullaeva

Republican Specialized Scientific and Practical Medical Center of Cardiology

Email: kozinmax1992@gmail.com
Uzbekistan, Tashkent, 100052

D. A. Zateyshchikov

Chazov National Medical Research Centre of Cardiology; City Clinical Hospital #17

Email: kozinmax1992@gmail.com
Russian Federation, Moscow, 121552; Moscow, 119620

O. O. Favorova

Chazov National Medical Research Centre of Cardiology

Email: kozinmax1992@gmail.com
Russian Federation, Moscow, 121552

O. S. Chumakova

Chazov National Medical Research Centre of Cardiology; City Clinical Hospital #17

Email: kozinmax1992@gmail.com
Russian Federation, Moscow, 121552; Moscow, 119620

References

  1. Maron B.J., Gardin J.M., Flack J.M. et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary artery risk development in (young) Adults // Circulation. 1995. V. 92. P. 785–789. https://doi.org/10.1161/01.cir.92.4.785
  2. Semsarian C., Ingles J., Maron M.S., Maron B.J. New perspectives on the prevalence of hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2015. V. 65. P. 1249–1254. https://doi.org/10.1016/j.jacc.2015.01.019
  3. Authors/Task Force members, Elliott P.M., Anastasakis A. et al. ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC) // Eur. Heart. J. 2014. V. 35. P. 2733–2779. https://doi.org/10.1093/eurheartj/ehu284
  4. Watkins H. Assigning a causal role to genetic variants in hypertrophic cardiomyopathy // Circ. Cardiovasc. Genet. 2013. V. 6. № 1. P. 2–4. https://doi.org/10.1161/CIRCGENETICS.111.000032
  5. Harper A.R., Goel A., Grace C. et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity // Nat. Genet. 2021. V. 53. № 2. P. 135–142. https://doi.org/10.1038/s41588-020-00764-0
  6. Jarcho J.A., McKenna W., Pare J.A. et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1 // N. Engl. J. Med. 1989. V. 321. № 20. P. 1372–1378. https://doi.org/10.1056/NEJM198911163212005
  7. Christian S., Cirino A., Hansen B. et al. Diagnostic validity and clinical utility of genetic testing for hypertrophic cardiomyopathy: A systematic review and meta-analysis // Open Heart. 2022. V. 9. № 1. https://doi.org/10.1136/openhrt-2021-001815
  8. Ingles J., Goldstein J., Thaxton C. et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes // Circ. Genom. Precis. Med. 2019. V. 12. № 2. https://doi.org/10.1161/CIRCGEN.119.002460
  9. Charron P., Dubourg O., Desnos M. et al. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene // Circulation. 1998. V. 97 № 22. P. 2230–2236. https://doi.org/10.1161/01.cir.97.22.2230
  10. Niimura H., Bachinski L.L., Sangwatanaroj S. et al. Seidman, mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy // N. Engl. J. Med. 1998. V. 338. № 18. P. 1248–1257. https://doi.org/10.1056/NEJM199804303381802
  11. Calore C., De Bortoli M., Romualdi C. et al. A founder MYBPC3 mutation results in HCM with a high risk of sudden death after the fourth decade of life // J. Med. Genet. 2015. V. 52. № 5. P. 338–347. https://doi.org/10.1136/jmedgenet-2014-102923
  12. Ниязова С.С., Чакова Н.Н., Комиссарова С.М., Сасинович М.А. Cпектр мутаций в генах саркомерных белков и их фенотипическое проявление у белорусских пациентов с гипертрофической кардиомиопатией // Мед. генетика. 2019. Т. 18. № 6. С. 21–33. https://doi.org/10.25557/2073-7998.2019.06.21-33
  13. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method // Methods. 2001. T. 25. № 4. С. 402–408. https://doi.org/10.1006/meth.2001.1262
  14. Sutton M.G.St.J., Lie J.T., Anderson K.R. et al. Histopathological specificity of hypertrophic obstructive cardiomyopathy. Myocardial fibre disarray and myocardial fibrosis // Br. Heart J. 1980. V. 44. № 4. P. 433–443. https://doi.org/10.1136/hrt.44.4.433
  15. Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology // Genet. Med. 2015. V. 17. P. 405–424. https://doi.org/10.1038/gim.2015.30
  16. Nickless A., Bailis J.M., You Z. Control of gene expression through the nonsense-mediated RNA decay pathway // Cell. Biosci. 2017. V. 7. P. 26. https://doi.org/10.1186/s13578-017-0153-7
  17. Duncker D.J., Bakkers J., Brundel B.J. et al. Animal and in silico models for the study of sarcomeric cardiomyopathies // Cardiovasc. Res. 2015. V. 105. № 4. P. 439–448. https://doi.org/10.1093/cvr/cvv006
  18. Kelly M.A., Caleshu C., Morales A. et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel // Genet. Med. 2018. V. 20. P. 351–359. https://doi.org/10.1038/gim.2017.218
  19. Helms A.S., Thompson A.D., Glazier A.A. et al. Spatial and functional distribution of MYBPC3 pathogenic variants and clinical outcomes in patients with hypertrophic cardiomyopathy // Circ. Genom. Precis. Med. 2020. V. 13. P. 396–405. https://doi.org/10.1161/CIRCGEN.120.002929
  20. Vignier N., Schlossarek S., Fraysse B. et al. Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice // Circ. Res. 2009. V. 105. P. 239–248. https://doi.org/10.1161/CIRCRESAHA.109.201251
  21. Sarikas A., Carrier L., Schenke C. et al. Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants // Cardiovasc. Res. 2005. V. 66.1. P. 33–44. https://doi.org/10.1016/j.cardiores.2005.01.004
  22. Andersen P.S., Havndrup O., Bundgaard H. et al. Genetic and phenotypic characterization of mutations in myosin-binding protein C (MYBPC3) in 81 families with familial hypertrophic cardiomyopathy: total or partial haploinsufficiency // Eur. J. Hum. Genet. 2004 V. 12. № 8. P. 673–677. https://doi.org/10.1038/sj.ejhg.5201190
  23. Prondzynski M., Krämer E., Laufer S.D. et al. Evaluation of MYBPC3 trans-splicing and gene replacement as therapeutic options in human iPSC-derived cardiomyocytes // Mol. Ther. Nucleic. Acids. 2017. V. 16. № 7. P. 475–486. https://doi.org/10.1016/j.omtn.2017.05.008
  24. Helms A.S., Davis F.M., Coleman D. et al. Sarcomere mutation-specific expression patterns in human hypertrophic cardiomyopathy // Circ. Cardiovasc. Genet. 2014. V. 7. P. 434–443. –10.1161/CIRCGENETICS.113.000448
  25. Anan R., Niimura H., Minagoe S. et al. A novel deletion mutation in the cardiac myosin-binding protein C gene as a cause of Maron's type IV hypertrophic cardiomyopathy // Am. J. Cardiol. 2002. V. 89. № 4. P. 487–488. https://doi.org/10.1016/s0002-9149(01)02281-0
  26. van Dijk S.J., Dooijes D., dos Remedios C. et al. Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction // Circulation. 2009. V. 119. № 11. P. 1473–1483. https://doi.org/10.1161/CIRCULATIONAHA.108.838672
  27. Marston S., Copeland O'N., Jacques A. et al. Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency // Circ. Res. 2009. V. 105. № 3. P. 219–222. https://doi.org/10.1161/CIRCRESAHA.109.202440
  28. O'Leary T.S., Snyder J., Sadayappan S. et al. MYBPC3 truncation mutations enhance actomyosin contractile mechanics in human hypertrophic cardiomyopathy // J. Mol. Cell. Cardiol. 2019. V. 127. P. 165–173. https://doi.org/10.1016/j.yjmcc.2018.12.003
  29. Predmore J.M., Wang P., Davis F. et al. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies // Circulation. 2010. V. 121. № 8. P. 997–1004. https://doi.org/10.1161/CIRCULATIONAHA.109.904557
  30. Suay-Corredera G., Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C // FEBS Lett. 2022. V. 596. № 6. P. 703–746. https://doi.org/10.1002/1873-3468.14301

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Histological analysis of proband myocardial biopsy. a – cardiomyocyte hypertrophy and nuclear polymorphism, hematoxylin and eosin staining; b – disordered arrangement and hypertrophy of cardiomyocytes, hematoxylin and eosin staining; c – interstitial fibrosis: collagen fibers (purple-red), cardiomyocytes (yellow), Van Gieson staining.

Download (369KB)
3. Fig. 2. Results of Sanger sequencing of the MYBPC3 gene region in a patient with HCMP II.3 (proband), carrier of variant C.2781insCACA in a heterozygous state (electrophoregram a), and in patient III.2, which is not a carrier (electrophoregram b). On electrophoregram A, the green stripe shows the region in the 5’ region from the index variant, the blue stripe shows the insertion of TGTG, the orange stripe shows the “doubled sequence" in the 3’ region from the variant.

Download (221KB)
4. Fig. 3. Relative transcript levels of the MYBPC3 gene in the tissue of the left ventricle of proband and 14 patients with aortic stenosis who made up the control group. For proband, the analysis was performed independently in three myocardial fragments (three technical repeats). The levels of the studied transcripts were calculated relative to the expression level of the GAPDH gene. The data is presented in the form of a scattering graph (the average value with a standard deviation).

Download (143KB)
5. Fig. 4. Pedigree of a patient with HCMP II.3 (proband, shown by arrow), a carrier of the c.2781insCACA variant in the MYBPC3 gene. Symbols with a solid fill are carriers of the variant, in which the HCMP is confirmed; symbols with a vertical black stripe inside are asymptomatic carriers of the variant; N are relatives of the proband, who are not carriers of the variant; ? – the father of a proband with an unknown genotype and phenotype (presumably the carrier of a variant with the disease).

Download (206KB)

Copyright (c) 2024 Russian Academy of Sciences