Influence of Chronic Social Stress on the Expression of Genes Associated with Neurotransmitter Systems in the Hypothalamus of Male Mice
- Авторлар: Kovalenko I.L.1, Galyamina A.G.1, Smagin D.A.1, Kudryavtseva N.N.1,2
-
Мекемелер:
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
- Pavlov Institute of Physiology, Russian Academy of Sciences
- Шығарылым: Том 60, № 6 (2024)
- Беттер: 44-54
- Бөлім: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://rjpbr.com/0016-6758/article/view/667247
- DOI: https://doi.org/10.31857/S0016675824060047
- EDN: https://elibrary.ru/BXZTVB
- ID: 667247
Дәйексөз келтіру
Аннотация
Chronic social stress caused by repeated negative experiences in agonistic interactions induces depressive-like behavior in male mice. The aim of the study was to study changes in the expression of genes encoding proteins involved in the metabolism, reception, and transport of catecholamines, opioids, glutamate, and GABA under the influence of chronic stress. Hypothalamic samples were sequenced using RNA-Seq. It was shown that the expression of the catecholaminergic genes Adra1b, Adrbk1, Comtd1, Ppp1r1b, Sncb, Sncg, and Th in depressed animals is increased, while the expression of the Maoa and Maob genes is reduced. The expression of the opioidergic and cannabinoidergic genes Pdyn, Penk, Pomc, Pnoc, Ogfr, and Faah was upregulated, while that of the Oprk1, Opcml, Ogfrl1, and Cnr1 genes was downregulated. The expression of the glutamatergic genes Grik3, Grik4, Grik5, Grin1, Grm2, and Grm4 was increased, while the expression of the Gria3, Grik1, Grik2, Grin2a, Grin3a, Grm5, Grm8, and Gad2 genes was reduced. The expression of the GABAergic genes Gabre, Gabbr2, and Slc6a11 was higher, while the expression of the Gabra1, Gabra2, Gabra3, Gabrb2, Gabrb3, Gabrg1, Gabrg2, and Slc6a13 genes was lower in depressed animals. The data suggest that gene products that interact with other neurotransmitter systems (Th, Gad2, Gabra1, Gabrg2, Grin1, and Pdyn) may be of interest as potential targets for pharmacological correction of the consequences of social stress.
Негізгі сөздер
Толық мәтін

Авторлар туралы
I. Kovalenko
FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: koir0909@mail.ru
Ресей, Novosibirsk, 630090
A. Galyamina
FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Email: koir0909@mail.ru
Ресей, Novosibirsk, 630090
D. Smagin
FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Email: koir0909@mail.ru
Ресей, Novosibirsk, 630090
N. Kudryavtseva
FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Pavlov Institute of Physiology, Russian Academy of Sciences
Email: koir0909@mail.ru
Ресей, Novosibirsk, 630090; Saint-Petersburg, 199034
Әдебиет тізімі
- Kudryavtseva N.N., Bakshtanovskaya I.V., Koryakina L.A. Social model of depression in mice of C57BL/6J strain // Pharmacol. Biochem. Behav. 1991. V.38. P. 315–320, https://doi.org/10.1016/0091-3057(91)90284-9
- Августинович Д.Ф., Алексеенко О.В., Бакштановская И.В. и др. Динамические изменения серотонергической и дофаминергической активности мозга в процессе развития тревожной депрессии: экспериментальное исследование // Успехи физиол. наук. 2004. Т. 35. С. 19–40.
- Кудрявцева Н.Н., Амстиславская Т.Г., Августинович Д.Ф. и др. Влияние хронического опыта побед и поражений в социальных конфликтах на состояние серотонергической системы головного мозга мышей // Журн. высшей нервной деят. им. И.П. Павлова. 1996. Т. 46. С. 1088–1096.
- Amstislavskaya T.G., Kudryavtseva N.N. Effect of repeated experience of victory and defeat in daily agonistic confrontations on brain tryptophan hydroxylase activity // FEBS Lettr. 1997. V. 406. P. 106–108. https://doi.org/10.1016/s0014-5793(97)00252-4
- Smagin D., Boyarskikh U., Bondar N. et al. Reduction of serotonergic gene expression in the raphe nuclei of the midbrain under positive fighting experience in male mice // Adv. Biosci. Biotechnol. 2013. V. 4. P. 36–44.
- Puglisi-Allegra S., Cabib S. Effects of defeat experiences on dopamine metabolism in different brain areas of the mouse // Aggress. Behav. 1990 .V. 16. P. 271–284. https://doi.org/10.1358/dnp.1998.11.9.863689
- Tidey J.W., Miczek K.A. Social defeat stress selectively alters mesocorticolimbic dopamine release: An in vivo microdialysis study // Brain. Res. 1996. V. 721. P. 140–149. https://doi.org/10.1016/0006-8993(96)00159-x
- Fatemi S.H., Stary J.M., Earle J.A. et al. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum // Schizophr. Res. 2005. V. 72. P. 109–122. https://doi.org/10.1016/j.schres.2004.02.017
- Karolewicz B., Maciag D., O’Dwyer G. et al. Reduced level of glutamic acid decarboxylase 67 kDa in the prefrontal cortex in major depression // Int. J. Neuropsychopharmacol. 2010. V. 13. P. 411–420. https://doi.org/10.1017/S1461145709990587
- Browne C.A., Lucki I. Targeting opioid dysregulation in depression for the development of novel therapeutics // Pharmacol. Ther. 2019. V. 201. P. 51–76. https://doi.org/10.1016/j.pharmthera.2019.04.009
- Anderson S.A., Michaelides M., Zarnegar P. et al. Impaired periamygdaloid-cortex prodynorphin is characteristic of opiate addiction and depression // J. Clin. Invest. 2013. V. 123. P. 5334–5341. h ttps://doi.org/10.1172/JCI70395
- Melo I., Drews E., Zimmer A., Bilkei-Gorzo A. Enkephalin knockout male mice are resistant to chronic mild stress // Genes Brain Behav. 2014. V. 13. P. 550–558. https://doi.org/10.1111/gbb.12139
- Qu N., He Y., Wang C. et al. A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia // Mol. Psychiatry. 2020. V. 25. P. 1006–1021. https://doi.org/10.1038/s41380-019-0506-1
- Parsons C.G., Danysz W., Quack G. Glutamate in CNS disorders as a target for drug development: an update // Drug. News. Perspect. 1998. V. 11. P. 523–569. https://doi.org/10.1358/dnp.1998.11.9.863689
- Nestler E.J., Carlezon W.A. Jr. The mesolimbic dopamine reward circuit in depression // Biol. Psychiatry. 2006. V. 59. P. 1151–1159. https://doi.org/10.1016/j.biopsych.2005.09.018
- Hashimoto K. Emerging role of glutamate in the pathophysiology of major depressive disorder // Brain. Res. Rev. 2009. V. 61. P. 105–123. https://doi.org/10.1016/j.brainresrev.2009.05.005
- Barker D.J., Root D.H., Zhang S., Morales M. Multiplexed neurochemical signaling by neurons of the ventral tegmental area // J. Chem. Neuroanat. 2016. V. 73. P. 33–42. https://doi.org/10.1016/j.jchemneu.2015.12.016
- Kudryavtseva N.N., Smagin D.A., Kovalenko I.L., Vishnivetskaya G.B. Repeated positive fighting experience in male inbred mice // Nat. Protoc. 2014. V. 9. P. 2705–2717. https://doi.org/10.1038/nprot.2014.156
- Kudryavtseva N.N., Avgustinovich D.F. Behavioral and physiological markers of experimental depression induced by social conflicts (DISC) // Aggress. Behav. 1998. V. 24. P. 271–286.
- Kudryavtseva N.N. Development of mixed anxiety/depression-like state as a consequence of chronic anxiety: Review of experimental data // Curr. Top. Behav. Neurosci. 2022. V. 54. P. 125–152. https://doi.org/10.1007/7854_2021_248
- Коваленко И.Л., Смагин Д.А., Галямина А.Г. и др. Изменение экспрессии дофаминергических генов в структурах мозга самцов мышей под влиянием хронического социального стресса: данные RNA-seq // Мол. биология. 2016. V. 50. P. 184–187. https://doi.org/10.7868/S00268984116010080
- Hebert M.A., Serova L.I., Sabban E.L. Single and repeated immobilization stress differentially trigger induction and phosphorylation of several transcription factors and mitogenactivated protein kinasesin the rat locus coeruleus // J. Neurochem. 2005. V. 95. P. 484–498. https://doi.org/10.1111/j.1471-4159.2005.03386.x
- Kvetnansky R., Sabban E.L., Palkovits M. Catecholaminergic systems in stress: Structural and molecular genetic approaches // Physiol. Rev. 2009. V. 89. P. 535–606. https://doi.org/10.1152/physrev.00042.2006
- Kudryavtseva N.N., Smagin D.A., Kovalenko I.L. et al. Serotonergic genes in the development of anxiety/depression-like state and pathology of aggressive behavior in male mice: RNA-seq data // Mol. Biol. 2017. V. 51. P. 251–262, https://doi.org/10.7868/S0026898417020136
- George J.M. The synucleins // Genome Biol. 2002. V. 3. https://doi.org/10.1186/gb-2001-3-1-reviews3002
- Oaks A.W., Sidhu A. Synuclein modulation of monoamine transporters // FEBS Lett. 2011. V. 585. P. 1001–1006. https://doi.org/10.1016/j.febslet.2011.03.009
- Galyamina A.G., Kovalenko I.L., Smagin D.A., Kudryavtseva N.N. Changes in the expression of neurotransmitter system genes in the ventral tegmental area in depressed mice: RNA-seq data // Neurosci. and Behav. Physiol. 2018. V. 48. P. 591–602.
- Frieling H., Gozner A., Römer K.D. et al. Alpha-synuclein mRNA levels correspond to beck depression inventory scores in females with eating disorders // Neuropsychobiology. 2008. V. 58. P. 48–52. https://doi.org/10.1159/000155991
- Ninkina N., Peters O., Millership S. et al. Gamma-synucleinopathy: Neurodegeneration associated with overexpression of the mouse protein // Hum. Mol. Genet. 2009. V. 18. P. 1779–1794. https://doi.org/10.1093/hmg/ddp090
- Merrill J.O., Korff M., Banta-Green C.J. et. al. Prescribed opioid difficulties, depression and opioid dose among chronic opioid therapy patients // Gen. Hosp. Psychiatry. 2012. V. 34. P. 581–587. https://doi.org/10.1016/j.genhosppsych.2012.06.018
- Scherrer J. F., Salas J., Copeland L.A. et al. Prescription opioid duration, dose, and increased risk of depression in 3 large patient populations //Ann. Fam. Med. 2016. V. 14. P. 54–62. https://doi.org/10.1370/afm.1885
- Lazary J., Eszlari N., Juhasz G., Bagdy G. Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma // Eur. Neuropsychopharmacol. 2016. V. 26. P. 1020–1028. https://doi.org/10.1016/j.euroneuro.2016.03.003
- Wang Y., Zhang X. FAAH inhibition produces antidepressant-like efforts of mice to acute stress via synaptic long-term depression // Behav. Brain Res. 2017. V. 324. P. 138–145. https://doi.org/10.1016/j.bbr.2017.01.054
- Domschke K., Dannlowski U., Ohrmann P. et al. Cannabinoid receptor 1 (CNR1) gene: Impact on antidepressant treatment response and emotion processing in major depression // Eur. Neuropsychopharmacol. 2008. V. 18. P. 751–759. https://doi.org/10.1016/j.euroneuro.2008.05.003
- Mitjans M., Serretti A., Fabbri C. et al. Screening genetic variability at the CNR1 gene in both major depression etiology and clinical response to citalopram treatment // Psychopharmacology. 2013. V. 227. P. 509–519, https://doi.org/10.1007/s00213-013-2995-y
- Masih J., Verbeke W. Exploring association of opioid receptor genes polymorphism with positive and negative moods using Positive and Negative Affective States Scale (PANAS) // Clin. Exp. Psychol. 2019. V. 5. № 1. P. 1–6.
- Schol-Gelok S., Janssens A. C., Tiemeier, H. et al. A genome-wide screen for depression in two independent Dutch populations // Biol. Psychiatry. 2010. V. 68. P. 187–196. https://doi.org/10.1016/j.biopsych.2010.01.033
- Li X., Tizzano J.P., Griffey K. et al. Antidepressant-like actions of an AMPA receptor potentiator (LY392098) // Neuropharmacology. 2001. V. 40. P. 1028–1033. https://doi.org/10.1016/s0028-3908(00)00194-5
- Kotlinska J., Liljequist S. The putative AMPA receptor antagonist, LY326325, produces anxiolytic effects without altering locomotor activity in rats // Pharmacol. Biochem. Behav. 1998. V. 60. P. 119–124. https://doi.org/10.1016/s0091-3057(97)00565-0
- Walker D.L., Davis M. The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction // Pharmacol. Biochem. Behav. 2002. V.71. P. 379–392. https://doi.org/10.1016/s0091-3057(01)00698-0
- Chourbaji S., Vogt M.A., Fumagalli F. et al. AMPA receptor subunit 1 (GluRA) knockout mice model the glutamate hypothesis of depression // FASEB J. 2008. V. 22. P. 3129–3134. https://doi.org/10.1096/fj.08-106450
- Papp M., Moryl E. Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression // Eur. J. Pharmacol. 1994. V. 263. P. 1–7. https://doi.org/10.1016/0014-2999(94)90516-9
- Wiley J.L., Cristello A.F., Balster R.L. Effects of site-selective NMDA receptor antagonists in an elevated plus-maze model of anxiety in mice // Eur. J. Pharmacol. 1995. V. 294. P. 101–107. https://doi.org/10.1016/0014-2999(95)00506-4
- Barkus C., McHugh S.B., Sprengel R. et al. Hippocampal NMDA receptors and anxiety: At the interface between cognition and emotion // Eur. J. Pharmacol. 2010. V. 626. P. 49–56. https://doi.org/10.1016/j.ejphar.2009.10.014
- Stelly C.E., Pomrenze M.B., Cook J.B., Morikawa H. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning // Elife. 2016. V. 5. https://doi.org/10.7554/eLife.15448
- Wieronska J.M., Branski P., Szewczyk B. et al. Changes in the expression of metabotropic glutamate receptor 5 (mGluR5) in the rat hippocampus in an animal model of depression // Pol. J. Pharmacol. 2001. V. 53. P. 659–662.
- Wang H., Zhu Y.Z., Wong P. T.-H. et al. cDNA microarray analysis of gene expression in anxious PVG and SD rats after cat-freezing test. // Exp. Brain. Res. 2003. V. 149. P. 413–421. https://doi.org/10.1007/s00221-002-1369-1
- Kroes R.A., Panksepp J., Burgdorf J. et al. Modeling depression: Social dominance-submission gene expression patterns in rat neocortex // Neuroscience. 2006. V. 137. P. 37–49. https://doi.org/10.1016/j.neuroscience.2005.08.076
- Tanay V.A., Glencorse T.A., Greenshaw A.J. et al.. Chronic administration of antipanic drugs alters rat brainstem GABAA receptor subunit mRNA levels // Neuropharmacology. 1996. V. 35. P. 1475–1482. https://doi.org/10.1016/s0028-3908(96)00065-2
- Tanay V.M., Greenshaw A.J., Baker G.B., Bateson A.N. Common effects of chronically administered antipanic drugs on brainstem GABA(A) receptor subunit gene expression // Mol. Psychiatry. 2001. V. 6. P. 404–412. https://doi.org/10.1038/sj.mp.4000879
- Ménard C., Tse Y.C., Cavanagh C. et al. Knockdown of prodynorphin gene prevents cognitive decline, reduces anxiety, and rescues loss of group 1 metabotropic glutamate receptor function in aging // J. Neurosci. 2013. V. 33. P. 12792–12804. https://doi.org/10.1523/JNEUROSCI.0290-13.2013
- Ménard C., Quirion R., Bouchard S. et al. Glutamatergic signaling and low prodynorphin expression are associated with intact memory and reduced anxiety in rat models of healthy aging // Front. Aging Neurosci. 2014. V. 6. https://doi.org/10.3389/fnagi.2014.00081
- Smagin D.A., Kovalenko I.L., Galyamina A.G. et al. Dysfunction in ribosomal gene expression in the hypotalamus and hippocampus following chronic social defeat stress in male mice as revealed by RNA-seq // Neural. Plast. 2016. 3289187.
- Raimundo N. Mitochondrial pathology: Stress signals from the energy factory // Trends in Molecular Medicine. 2014. V. 20. N. 5. P. 282–292.
- Кудрявцева Н.Н., Шурлыгина А.В., Галямина А.Г. и др. Иммунопатология смешанного тревожно-депрессивного расстройства: экспериментальный подход к коррекции иммунодефицитных состояний // Журн. высшей нервной деят. им И.П. Павлова. 2017. Т. 67. № 6. С. 671–692.
Қосымша файлдар
