DNA Methylation in Aortic Aneurysms of Different Localization
- Autores: Kucher A.N.1, Shipulina S.A.1, Goncharova I.A.1, Nazarenko M.S.1
-
Afiliações:
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
- Edição: Volume 60, Nº 6 (2024)
- Páginas: 3-21
- Seção: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://rjpbr.com/0016-6758/article/view/667242
- DOI: https://doi.org/10.31857/S0016675824060018
- EDN: https://elibrary.ru/BYFOJE
- ID: 667242
Citar
Resumo
Aortic aneurysm (AA) is a life-threatening condition, and aortic rupture that is the complication of AA in the absence of emergency surgery leads to death. Genetic (more often in thoracic AA – TAA) and environmental factors (in TAA and abdominal AA – AAA) contribute to the development of AA. This review summarizes the data of scientific publications devoted to the study of DNA methylation under the influence of AA risk factors, as well as in the cells of different parts of the aorta (thoracic, abdominal) in normal and pathological conditions. Changes in DNA methylation are observed in aortic and/or blood cells in the presence of AA risk factors (arterial hypertension, smoking, age, presence of comorbidities). Studies of DNA methylation in TAA and AAA are few and have been conducted using different approaches to sample formation, cell sample selection, and experimental methods. However, they provide convincing evidence of the altered DNA methylation status of genes selected for study using a candidate approach (in the AAA study), as well as of different genomic regions in genome-wide DNA methylation analysis (mainly in TAA studies). Genes localized in differentially methylated regions are associated with the functioning of the cardiovascular system and are involved in cellular and metabolic processes pathogenetically significant for the development of AA. In a number of cases, the association of DNA methylation levels with clinical parameters in AA has been established. These results indicate the prospect of expanding the studies of DNA methylation in AA, including the identification of new pathogenetically significant links in AA development.
Palavras-chave
Texto integral

Sobre autores
A. Kucher
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Email: maria.nazarenko@medgenetics.ru
Rússia, Tomsk, 634050
S. Shipulina
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Email: maria.nazarenko@medgenetics.ru
Rússia, Tomsk, 634050
I. Goncharova
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Email: maria.nazarenko@medgenetics.ru
Rússia, Tomsk, 634050
M. Nazarenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Autor responsável pela correspondência
Email: maria.nazarenko@medgenetics.ru
Rússia, Tomsk, 634050
Bibliografia
- Mangum K.D., Farber M.A. Genetic and epigenetic regulation of abdominal aortic aneurysms // Clin. Genet. 2020. V. 97. № 6. P. 815–826. https://doi.org/10.1111/cge.13705
- Gouveia E Melo R., Silva Duarte G., Lopes A. et al. Incidence and prevalence of thoracic aortic aneurysms: A systematic review and meta-analysis of population-based studies // Semin. Thorac. Cardiovasc. Surg. 2022. V. 34. № 1. P. 1–16. https://doi.org/10.1016/j.jvs.2021.08.080
- Tomee S.M., Bulder R.M.A., Meijer C.A. et al. Excess mortality for abdominal aortic aneurysms and the potential of strict implementation of cardiovascular risk management: A multifaceted study integrating meta-analysis, National Registry, and PHAST and TEDY Trial Data // Eur. J. Vasc. Endovasc. Surg. 2023. V. 65. № 3. P. 348–357. https://doi.org/10.1016/j.ejvs.2022.11.019
- Isselbacher E.M., Preventza O., Hamilton Black J. 3rd et al. ACC/AHA Guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines // Circulation. 2022. V. 146. № 24. P. e334–e482. https://doi.org/10.1161/CIR.0000000000001106
- Ying A.J., Affan E.T. Abdominal aortic aneurysm screening: A systematic review and meta-analysis of efficacy and cost // Ann. Vasc. Surg. 2019. V. 4. P. 298–303.e3. https://doi.org/10.1016/j.avsg.2018.05.044
- Qian G., Adeyanju O., Olajuyin A., Guo X. Abdominal aortic aneurysm formation with a focus on vascular smooth muscle cells // Life (Basel). 2022. V. 12. № 2. P. 191. https://doi.org/10.3390/life12020191
- Zhou Z., Cecchi A.C., Prakash S.K., Milewicz D.M. Risk factors for thoracic aortic dissection // Genes (Basel). 2022. V. 13. № 10. https://doi.org/10.3390/genes13101814
- Gao J., Cao H., Hu G. et al. The mechanism and therapy of aortic aneurysms // Signal Transduct. Target. Ther. 2023. V. 8. № 1. P. 55. https://doi.org/10.1038/s41392-023-01325-7
- Duarte V.E., Yousefzai R., Singh M.N. Genetically triggered thoracic aortic disease: Who should be tested? // Methodist Debakey Cardiovasc. J. 2023. V. 19. № 2. P. 24–28. https://doi.org/10.14797/mdcvj.1218
- van de Luijtgaarden K.M., Heijsman D., Maugeri A. et al. First genetic analysis of aneurysm genes in familial and sporadic abdominal aortic aneurysm // Hum. Genet. 2015. V. 134. № 8. P. 881–893. https://doi.org/10.1007/s00439-015-1567-0
- Gyftopoulos A., Ziganshin B.A., Elefteriades J.A., Ochoa Chaar C.I. Comparison of genes associated with thoracic and abdominal aortic aneurysms // Aorta (Stamford). 2023. V. 11. № 3. P. 125–134. https://doi.org/10.1055/s-0043-57266
- Lino Cardenas C.L., Kessinger C.W., Cheng Y. et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm // Nat. Commun. 2018. V. 9. № 1. P. 1009. https://doi.org/10.1038/s41467-018-03394-7
- Lino Cardenas C.L., Kessinger C.W., MacDonald C. et al. Inhibition of the methyltranferase EZH2 improves aortic performance in experimental thoracic aortic aneurysm // JCI Insight. 2018. V. 3. № 5. https://doi.org/10.1172/jci.insight.97493
- Portelli S.S., Robertson E.N., Malecki C. et al. Epigenetic influences on genetically triggered thoracic aortic aneurysm // Biophys. Rev. 2018. V. 10. № 5. P. 1241–1256. https://doi.org/10.1007/s12551-018-0460-1
- Chang Z., Zhao G., Zhao Y. et al. BAF60a deficiency in vascular smooth muscle cells prevents abdominal aortic aneurysm by reducing inflammation and extracellular matrix degradation // Arterioscler. Thromb. Vasc. Biol. 2020. V. 40. № 10. P. 2494–2507. https://doi.org/10.1161/ATVBAHA.120.314955
- Tasopoulou K.M., Argiriou C., Tsaroucha A.K., Georgiadis G.S. Circulating miRNAs as biomarkers for diagnosis, surveillance, and postoperative follow-up of abdominal aortic aneurysms // Ann. Vasc. Surg. 2023. V. 93. P. 387–404. https://doi.org/10.1016/j.avsg.2023.02.029
- Zhang X., Liu S., Weng X. et al. Brg1 trans-activates endothelium-derived colony stimulating factor to promote calcium chloride induced abdominal aortic aneurysm in mice // J. Mol. Cell. Cardiol. 2018. V. 125. P. 6–17. https://doi.org/10.1016/j.yjmcc.2018.10.012
- Krishna S.M., Dear A.E., Norman P.E., Golledge J. Genetic and epigenetic mechanisms and their possible role in abdominal aortic aneurysm // Atherosclerosis. 2010. V. 212. № 1. P. 16–29. https://doi.org/10.1016/j.atherosclerosis.2010.02.008.
- Han Y., Tanios F., Reeps C. et al. Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm // Clin. Epigenetics. 2016. V. 8. P. 3. https://doi.org/10.1186/s13148-016-0169-6
- Jiang H., Xia Q., Xin S. et al. Abnormal epigenetic modifications in peripheral T cells from patients with abdominal aortic aneurysm are correlated with disease development // J. Vasc. Res. 2015. V. 52. № 6. P. 404–413. https://doi.org/10.1159/000445771
- Toghill B.J., Saratzis A., Freeman P.J. et al. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells // Clin. Epigenetics. 2018. V. 1. P. 29. https://doi.10.1186/s13148-018-0460-9
- D’Amico F., Doldo E., Pisano C. et al. Specific miRNA and gene deregulation characterize the increased angiogenic remodeling of thoracic aneurysmatic aortopathy in Marfan syndrome // Int. J. Mol. Sci. 2020. V. 21. № 18. https://doi.org/10.3390/ijms21186886
- Greenway J., Gilreath N., Patel S. et al. Profiling of histone modifications reveals epigenomic dynamics during abdominal aortic aneurysm formation in mouse models // Front. Cardiovasc. Med. 2020. V. 7. https://doi.org/10.3389/fcvm.2020.595011
- Mangum K., Gallagher K., Davis F.M. The role of epigenetic modifications in abdominal aortic aneurysm pathogenesis // Biomolecules. 2022. V. 12. № 2. https://doi.org/10.3390/biom12020172
- Rombouts K.B., van Merrienboer T.A.R., Ket J.C.F. et al. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections // Eur. J. Clin. Invest. 2022. V. 52. № 4. https://doi.org/10.1111/eci.13697
- Eilenberg W., Zagrapan B., Bleichert S. et al. Histone citrullination as a novel biomarker and target to inhibit progression of abdominal aortic aneurysms // Transl. Res. 2021. V. 233. P. 32–46. https://doi.org/10.1016/j.trsl.2021.02.003
- Bararu Bojan Bararu I., Pleșoianu C.E., Badulescu O.V. et al. Molecular and cellular mechanisms involved in aortic wall aneurysm development // Diagnostics (Basel, Switzerland). 2023. V. 13. V. 2. https://doi.org/10.3390/diagnostics13020253
- Quintana R.A., Taylor W.R. Cellular mechanisms of aortic aneurysm formation // Circ. Res. 2019. V. 124. № 4. P. 607–618. https://doi.org/10.1161/CIRCRESAHA.118.313187
- Mishra S., Raval M., Kachhawaha A.S. et al. Aging: Epigenetic modifications // Prog. Mol. Biol. Transl. Sci. 2013. V. 197. P. 171–209. https://doi.org/10.1016/bs.pmbts.2023.02.002
- Wang X., Falkner B., Zhu H. et al. A genome-wide methylation study on essential hypertension in young African American males // PLoS OnE. 2013. V. 8. P. 451. https://doi.org/10.1371/journal.pone.0053938
- Wise I.A., Charchar F.J. Epigenetic modifications in essential hypertension // Int. J. Mol. Sci. 2016. V. 17. № 4. https://doi.org/10.3390/ijms17040451
- Кучер А.Н., Назаренко М.С., Марков А.В. и др. Вариабельность профилей метилирования CpG-сайтов генов микроРНК в лейкоцитах и тканях сосудов при атеросклерозе у человека // Биохимия. 2017. Т. 82. № 6. С. 923–933.)
- Liu P., Zhang J., Du D. et al. Altered DNA methylation pattern reveals epigenetic regulation of Hox genes in thoracic aortic dissection and serves as a biomarker in disease diagnosis // Clin. Epigenetics. 2021. V. 13. № 1. P. 124. https://doi.org/10.1186/s13148-021-01110-9
- Dai Y., Chen D., Xu T. DNA methylation aberrant in atherosclerosis // Front. Pharmacol. 2022. V. 13.. https://doi.org/10.3389/fphar.2022.815977
- Liu S., Li Y., Wei X. et al. Genetic analysis of DNA methylation in dyslipidemia: a case-control study // PeerJ. 2022. V. 10. https://doi.org/10.7717/peerj.14590
- Chu D.T., Bui N.L., Vu Thi H. et al. Role of DNA methylation in diabetes and obesity // Prog. Mol. Biol. Transl. Sci. 2023. V. 197. P. 153–170. https://doi.org/10.1016/bs.pmbts.2023.01.008
- da Silva Rodrigues G., Noronha N.Y., Almeida M.L. et al. Exercise training modifies the whole blood DNA methylation profile in middle-aged and older women // J. Appl. Physiol. (1985). 2023. V. 134. № 3. P. 610–621. https://doi.org/10.1152/japplphysiol.00237.2022
- Krolevets M., Cate V.T., Prochaska J.H. et al. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites // Clin. Epigenetics. 2023. V. 15. № 1 P. 56. https://doi.org/10.1186/s13148-023-01468-y
- Smolarek I., Wyszko E., Barciszewska A.M. et al. Global DNA methylation changes in blood of patients with essential hypertension // Med. Sci. Monit. 2010. V. 16. № 3. P. CR149–CR155.
- Kato N., Loh M., Takeuchi F. et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation // Nat. Genet. 2015. V. 47. № 11. P. 1282–1293. https://doi.org/10.1038/ng.3405
- Zhang Y., Mei J., Li J. et al. DNA Methylation in Atherosclerosis: A new perspective // Evid. Based Complement. Alternat. Med. 2021. V. 2021. https://doi.org/10.1155/2021/6623657
- Chen Y., Liang L., Wu C. et al. Epigenetic control of vascular smooth muscle cell function in atherosclerosis: A role for DNA methylation // DNA Cell Biol. 2022. V. 41. № 9. P. 824–837. https://doi.org/10.1089/dna.2022.0278
- Пальцева Е.М. Аневризмы аорты: этиология и патоморфология // Мол. медицина. 2015. Т. 4. С., 3–10.)
- Кучер А.Н., Назаренко М.С. Роль микро-РНК при атерогенезе // Кардиология. 2017. V. 57. № 9. P. 65–76. https://doi.org/10.18087/cardio.2017.9.10022)
- Bell C.G., Xia Y., Yuan W. et al. Novel regional age-associated DNA methylation changes within human common disease-associated loci // Genome Biol. 2016. V. 17. № 1. P. 193. https://doi.org/10.1186/s13059-016-1051-8
- Balint B., Bernstorff I.G.L., Schwab T., Schäfers H.J. Age-dependent phenotypic modulation of smooth muscle cells in the normal ascending aorta // Front. Cardiovasc Med. 2023. V. 10. https://doi.org/10.3389/fcvm.2023.1114355.
- Wang Z., Zhao J., Sun J. et al. Sex-dichotomous effects of NOS1AP promoter DNA methylation on intracranial aneurysm and brain arteriovenous malformation // Neurosci. Lett. 2016. V. 621. P. 47–53. https://doi.org/10.1016/j.neulet.2016.04.016
- Fragou D., Pakkidi E., Aschner M. et al. Smoking and DNA methylation: Correlation of methylation with smoking behavior and association with diseases and fetus development following prenatal exposure // Food Chem. Toxicol. 2019. V. 129. P. 312–327. https://doi.org/10.1016/j.fct.2019.04.059
- Forte A., Galderisi U., Cipollaro M. et al. Epigenetic regulation of TGF-β1 signalling in dilative aortopathy of the thoracic ascending aorta // Clin. Sci. (Lond). 2016. V. 130. № 16. P. 1389–1405. https://doi.org/10.1042/CS20160222
- Davis F.M., Gallagher K.A. Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease // Arterioscler. Thromb. Vasc. Biol. 2019. V. 39. № 4. P. 623–634. https://doi.org/10.1161/ATVBAHA.118.312135
- Davis F.M., Tsoi L.C., Melvin W.J. et al. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms // J. Exp. Med. 2021. V. 218. № 6. https://doi. org/10.1084/jem.20201839
- Zhao G., Zhao Y., Lu H. et al. BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis // J. Clin. Invest. 2022. V. 132. № 21. https://doi.org/10.1172/JCI158309
- Shah A.A., Gregory S.G., Krupp D. et al. Epigenetic profiling identifies novel genes for ascending aortic aneurysm formation with bicuspid aortic valves // Heart Surg. Forum. 2015. V. 18. № 4. P. E134–E139. https://doi.org/10.1532/hsf.1247
- Matsumura H., Nakano Y., Ochi H. et al. H558R, a common SCN5A polymorphism, modifies the clinical phenotype of Brugada syndrome by modulating DNA methylation of SCN5A promoters // J. Biomed. Sci. 2017. V. 24. № 1. P. 91. https://doi.org/10.1186/s12929-017-0397-x
- Pan S., Lai H., Shen Y. et al. DNA methylome analysis reveals distinct epigenetic patterns of ascending aortic dissection and bicuspid aortic valve // Cardiovasc Res. 2017. V. 113. № 6. P. 692–704. https://doi.org/10.1093/cvr/cvx050
- Björck H.M., Du L., Pulignani S. et al. Altered DNA methylation indicates an oscillatory flow mediated epithelial-to-mesenchymal transition signature in ascending aorta of patients with bicuspid aortic valve // Sci. Rep. 2018. V. 8. № 1. P. 2777. https://doi.org/10.1038/s41598-018-20642-4
- Lian R., Zhang G., Yan S. et al. Identification of molecular regulatory features and markers for acute type A aortic dissection // Comput. Math. Methods. Med. 2021. V. 2021. https://doi.org/10.1155/2021/6697848
- Chen Y., Xu X., Chen Z. et al. DNA methylation alternation in Stanford A acute aortic dissection /BMC Cardiovasc. Disord. 2022. V. 22. № 1. P. 455. https://doi.org/10.1186/s12872-022-02882-5
- Ryer E.J., Ronning K.E., Erdman R. et al. The potential role of DNA methylation in abdominal aortic aneurysms // Int. J. Mol. Sci. 2015. V. 16. № 5. P. 11259–11275. https://doi.org/10.3390/ijms160511259
- Krishna S.M., Seto S.W., Jose R.J. et al. Wnt signaling pathway inhibitor sclerostin inhibits angiotensin II-induced aortic aneurysm and atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2017. V. 37. № 3. P. 553–566. https://doi.org/10.1161/ATVBAHA.116.308723
- Xia Q., Zhang J., Han Y. et al. Epigenetic regulation of regulatory T cells in patients with abdominal aortic aneurysm // FEBS Open Bio. 2019. V. 9. № 6. P. 1137–1143. https://doi.org/10.1002/2211-5463.12643
- Zhong L., He X., Si X. et al. SM22α (Smooth Muscle 22α) prevents aortic aneurysm formation by inhibiting smooth muscle cell phenotypic switching through suppressing reactive oxygen species/NF-κB (Nuclear Factor-κB) // Arterioscler. Thromb. Vasc. Biol. 2019. V. 39. № 1. P. e10–e25. https://doi.org/10.1161/ATVBAHA.118.311917
- Skorvanova M., Matakova T., Skerenova M. et al. Methylation of MMP2, TIMP2, MMP9 and TIMP1 in abdominal aortic aneurysm // Bratisl. Lek. Listy. 2020. V. 121. № 10. P. 717–721. https://doi.org/10.4149/BLL_2020_117
- Vats S., Sundquist K., Wang X. et al. Associations of global DNA methylation and homocysteine levels with abdominal aortic aneurysm: A cohort study from a population-based screening program in Sweden // Int. J. Cardiol. 2020. V. 321. P. 137–142. https://doi.org/10.1016/j.ijcard.2020.06.022
- Simões G., Pereira T., Caseiro A. Matrix metaloproteinases in vascular pathology // Microvasc. Res. 2022. V. 143. https://doi.org/10.1016/j.mvr.2022.104398
- Stepien K.L., Bajdak-Rusinek K., Fus-Kujawa A. et al. Role of extracellular matrix and inflammation in abdominal aortic aneurysm // Int. J. Mol. Sci. 2022. V. 23. № 19. https://doi.org/10.3390/ijms231911078
- Doppler C., Messner B., Mimler T. et al. Noncanonical atherosclerosis as the driving force in tricuspid aortic valve associated aneurysms - A trace collection // J. Lipid Res. 2023. V. 64. № 3. https://doi.org/10.1016/j.jlr.2023.100338
- Maleki S., Kjellqvist S., Paloschi V. et al. Mesenchymal state of intimal cells may explain higher propensity to ascending aortic aneurysm in bicuspid aortic valves // Sci. Rep. 2016. V. 6. https://doi.org/10.1038/srep35712
- Narayanan N., Tyagi N., Shah A. et al. Hyperhomocysteinemia during aortic aneurysm: a plausible role of epigenetics // Int. J. Physiol. Pathophysiol. Pharmacol. 2013. V. 5. № 1. P. 32–42.
- Takada S., Berezikov E., Choi Y.L. et al. Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos // RNA. 2009. V. 15. P. 1507–1514. https://doi.org/10.1261/rna.1418309
- Chen K.C., Wang Y.S., Hu C.Y. et al. OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: A novel mechanism for cardiovascular diseases // FASEB J. 2011. V. 25. № 5. P. 1718–1728. https://doi.org/10.1096/fj.10-174904
- Rabkin S.W. The role matrix metalloproteinases in the production of aortic aneurysm // Prog. Mol. Biol. Transl Sci. 2017. V. 147. P. 239–265. https://doi.org/10.1016/bs.pmbts.2017.02.002
- Li T., Jiang B., Li X. et al. Serum matrix metalloproteinase-9 is a valuable biomarker for identification of abdominal and thoracic aortic aneurysm: a case-control study // BMC Cardiovasc. Disord. 2018. V. 18. № 1. P. 202. https://doi.org/10.1186/s12872-018-0931-0
- Shafeeque C.M., Sathyan S., Saradalekshmi K.R. et al. Methylation map genes can be critical in determining the methylome of intracranial aneurysm patients // Epigenomics. 2020. V. 12. № 10. P. 859–871. https://doi.org/10.2217/epi-2019-0280
- Galán M., Varona S., Orriols M. et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors // Dis. Model. Mech. 2016. V. 9. № 5. P. 541–552. https://doi.org/10.1242/dmm.024513
- Iyer V., Rowbotham S., Biros E. et al. A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms // Atherosclerosis. 2017. V. 261. P. 78–89. https://doi.10.1016/j.atherosclerosis.2017.03.010
- Li Y., Maegdefessel L. Non-coding RNA contribution to thoracic and abdominal aortic aneurysm disease development and progression // Front. Physiol. 2017. V. 8. https://doi.org/10.3389/fphys.2017.00429
- Zalewski D.P., Ruszel K.P., Stępniewski A. et al. Dysregulation of microRNA modulatory network in abdominal aortic aneurysm // J. Clin. Med. 2020. V. 9. № 6. P. 1974. https://doi.org/10.3390/jcm9061974
- Xu Y., Yang S., Xue G. The role of long non-coding RNA in abdominal aortic aneurysm // Front. Genet. 2023. V. 14. https://doi.org/10.3389/fgene.2023.115389
Arquivos suplementares
