Expression profiles of genes involved in lignan synthesis in developing flax seeds

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Flax seeds are the richest plant source of lignans, which prevent the development of many diseases. Secoisolariciresinol diglucoside (SDG) is the predominant lignan in seeds of the cultivated species Linum usitatissimum. We sequenced transcriptomes of flax seeds at five developmental stages for 8 varieties differing in lignan content grown under three different conditions and evaluated the expression of PLR1 and UGT74S1 genes, which play a key role in SDG synthesis. The co-expression of PLR1 and UGT74S1 genes was detected, and the expression level of these genes was observed to change tens and hundreds of times during seed development, confirming their role in SDG synthesis in flax seeds. Low temperature (16 °С) and abundant watering resulted in a shift of the maximum expression level of both genes to later dates (14th day after flowering) compared to poor watering and high temperature (24 °С) and optimal conditions (20 °С) (7th day after flowering). Meanwhile, the expression level of PLR1 and UGT74S1 genes was lower under high temperature and poor watering than under optimal conditions. No association was found between lignan content in seeds of the studied flax varieties and the expression level of PLR1 and UGT74S1 genes. Our results provide important information on the contribution of genotype and environment to the expression of key genes of SDG synthesis, which is also necessary for the development of optimal approaches to obtain lignan-rich flax seeds.

Full Text

Restricted Access

About the authors

Е. N. Pushkova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Author for correspondence.
Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow

E. М. Dvorianinova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow

L. P. Povkhova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: mnv-4529264@yandex.ru
119991, Moscow

T. А. Rozhmina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Federal Research Center for Bast Fiber Crops

Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow; 172002, Torzhok

R. O. Novakovskiy

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow

Е. A. Sigova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow

А. А. Dmitriev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow

N. V. Melnikova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow

References

  1. Goyal A., Sharma V., Upadhyay N. et al. Flax and flaxseed oil: An ancient medicine & modern functional food // J. Food Sci. and Technology. 2014. V. 51. P. 1633–1653. https://doi.org/10.1007/s13197-013-1247-9
  2. Fombuena V., Petrucci R., Dominici F. et al. Maleinized linseed oil as epoxy resin hardener for composites with high bio content obtained from linen byproducts // Polymers. 2019. V. 11. P. https://doi.org/10.3390/polym11020301
  3. Corino C., Rossi R., Cannata S. et al. Effect of dietary linseed on the nutritional value and quality of pork and pork products: Systematic review and meta-analysis // Meat Science. 2014. V. 98. P. 679–688. https://doi.org/10.1016/j.meatsci.2014.06.041
  4. Singh K.K., Mridula D., Rehal J. et al. Flaxseed: A potential source of food, feed and fiber // Crit. Rev. in Food Sci. and Nutrition. 2011. V. 51. https://doi.org/10.1080/10408390903537241
  5. Akter Y., Junaid M., Afrose S.S. et al. A comprehensive review on Linum usitatissimum medicinal plant: Its phytochemistry, pharmacology, and ethnomedicinal uses // Mini Rev. in Med. Chemistry. 2021. V. 21. P. 2801–2834. https://doi.org/10.2174/1389557521666210203153436
  6. Imran M., Ahmad N., Anjum F.M. et al. Potential protective properties of flax lignan secoisolariciresinol diglucoside // Nutrition J. 2015. V. 14. P. 71. https://doi.org/10.1186/s12937-015-0059-3
  7. Parikh M., Netticadan T., Pierce G.N. Flaxseed: Its bioactive components and their cardiovascular benefits // Am. J. of Physiology. Heart and Circulatory Physiology. 2018. V. 314. P. H146–H159. https://doi.org/10.1152/ajpheart.00400.2017
  8. Kezimana P., Dmitriev A.A., Kudryavtseva A.V. et al. Secoisolariciresinol diglucoside of flaxseed and its metabolites: Biosynthesis and potential for nutraceuticals // Front. in Genetics. 2018. V. 9. https://doi.org/10.3389/fgene.2018.00641
  9. Mali A.V., Padhye S.B., Anant S. et al. Anticancer and antimetastatic potential of enterolactone: Clinical, preclinical and mechanistic perspectives // Europ. J. Pharmacology. 2019. V. 852. P. 107–124. https://doi.org/10.1016/j.ejphar.2019.02.022
  10. Cullis C.A. Genetics and Genomics of Linum. Cham, Switzerland: Springer Int. Publ., 2019. 270 р.
  11. Muir A.D., Westcott N.D. Flax: The genus Linum. Boca Raton, FL, USA: CRC Press, 2003. 320 р.
  12. Locke A., Schneiderhan J., Zick S.M. Diets for health: goals and guidelines // Am, Family Physician. 2018. V. 97. P. 721–728.
  13. Tse T.J., Guo Y., Shim Y.Y. et al. Availability of bioactive flax lignan from foods and supplements // Crit. Rev. Food Sci. Nutr. 2023. V. 63. P. 9843–9858. https://doi.org/10.1080/10408398.2022.2072807
  14. Chhillar H., Chopra P., Ashfaq M.A. Lignans from linseed (Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect // Crit. Rev. Food Sci. Nutr. 2021. V. 61. P. 2719–2741. https://doi.org/10.1080/10408398.2020.1784840
  15. Johnsson P., Kamal-Eldin A., Lundgren L.N. et al. HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds // J. Agricultural and Food Chemistry. 2000. V. 48. P. 5216–5219. https://doi.org/10.1021/jf0005871
  16. Ezzat S.M., Shouman S.A., Elkhoely A. et al. Anticancer potentiality of lignan rich fraction of six flaxseed cultivars // Sci. Reports. 2018. V. 8. P. 544. https://doi.org/10.1038/s41598-017-18944-0
  17. Garros L., Drouet S., Corbin C. et al. Insight into the influence of cultivar type, cultivation year, and site on the lignans and related phenolic profiles, and the health-promoting antioxidant potential of flax (Linum usitatissimum L.) seeds // Molecules. 2018. V. 23. https://doi.org/10.3390/molecules23102636
  18. Diederichsen A., Fu Y.-B. Flax genetic diversity as the raw material for future success // Genus. 2008. V. 32. P. 33.
  19. Markulin L., Corbin C., Renouard S. et al. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants // Planta. 2019. V. 249. P. 1695–1714. https://doi.org/10.1007/s00425-019-03137-y
  20. Hemmati S., von Heimendahl C.B., Klaes M. et al. Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. // Planta Medica. 2010. V. 76. P. 928–934. https://doi.org/10.1055/s-0030-1250036
  21. Hano C., Martin I., Fliniaux O. et al. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds // Planta. 2006. V. 224. P. 1291–1301. https://doi.org/10.1007/s00425-006-0308-y
  22. Von Heimendahl C.B., Schafer K.M., Eklund P. et al. Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum // Phytochemistry. 2005. V. 66. P. 1254–1263. https://doi.org/10.1016/j.phytochem.2005.04.026
  23. Hemmati S., Schmidt T.J., Fuss E. (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B // FEBS Letters. 2007. V. 581. P. 603–610. https://doi.org/10.1016/j.febslet.2007.01.018
  24. Ghose K., Selvaraj K., McCallum J. et al. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG) // BMC Plant Biology. 2014. V. 14. https://doi.org/10.1186/1471-2229-14-82
  25. Fofana B., Ghose K., McCallum J. et al. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax // BMC Plant Biology. 2017. V. 17. P. 35. https://doi.org/10.1186/s12870-017-0982-x
  26. Wang L., Stegemann J.P. Extraction of high quality RNA from polysaccharide matrices using cetyltrimethylammonium bromide // Biomaterials. 2010. V. 31. P. 1612–1618. https://doi.org/10.1016/j.biomaterials.2009.11.024
  27. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data // Bioinformatics. 2014. V. 30. P. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  28. Krasnov G.S., Dmitriev A.A., Kudryavtseva A.V. et al. PPLine: An automated pipeline for SNP, SAP, and splice variant detection in the context of proteogenomics // J. of Proteome Res. 2015. V. 14. P. 3729–3737. https://doi.org/10.1021/acs.jproteome.5b00490
  29. Dmitriev A.A., Pushkova E.N., Novakovskiy R.O. et al. Genome sequencing of fiber flax cultivar Atlant using Oxford Nanopore and Illumina platforms // Front, Genetics. 2020. V. 11. https://doi.org/10.3389/fgene.2020.590282
  30. Dalisay D.S., Kim K.W., Lee C. et al. Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: Integrated omics and MALDI mass spectrometry imaging // J, Nat, Products. 2015. V. 78. P. 1231–1242. https://doi.org/10.1021/acs.jnatprod.5b00023

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Expression profiles of UGT74S1 and PLR1 genes during the development of flax seeds (3, 7, 14, 21 and 28 DPC) for varieties/lines AGT 427, Atalante, AGT 981, Entre-Rios, Raciol, AGT 422, Lola, AGT 1535 grown at 16 °C and excessive watering (16 °C), 20 °C and optimal watering (20 °C), 24 °C and insufficient watering (24 °C). There are no data available for AGT 422 for 21 and 28 DPTs at 24 °C and for Lola for 28 DPTs at 24 °C.

Download (670KB)

Copyright (c) 2024 Russian Academy of Sciences