Expression profiles of genes involved in lignan synthesis in developing flax seeds
- Authors: Pushkova Е.N.1, Dvorianinova E.М.1, Povkhova L.P.1, Rozhmina T.А.1,2, Novakovskiy R.O.1, Sigova Е.A.1, Dmitriev А.А.1, Melnikova N.V.1
-
Affiliations:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Federal Research Center for Bast Fiber Crops
- Issue: Vol 60, No 7 (2024)
- Pages: 112-117
- Section: КРАТКИЕ СООБЩЕНИЯ
- URL: https://rjpbr.com/0016-6758/article/view/667239
- DOI: https://doi.org/10.31857/S0016675824070113
- EDN: https://elibrary.ru/BGNLFZ
- ID: 667239
Cite item
Abstract
Flax seeds are the richest plant source of lignans, which prevent the development of many diseases. Secoisolariciresinol diglucoside (SDG) is the predominant lignan in seeds of the cultivated species Linum usitatissimum. We sequenced transcriptomes of flax seeds at five developmental stages for 8 varieties differing in lignan content grown under three different conditions and evaluated the expression of PLR1 and UGT74S1 genes, which play a key role in SDG synthesis. The co-expression of PLR1 and UGT74S1 genes was detected, and the expression level of these genes was observed to change tens and hundreds of times during seed development, confirming their role in SDG synthesis in flax seeds. Low temperature (16 °С) and abundant watering resulted in a shift of the maximum expression level of both genes to later dates (14th day after flowering) compared to poor watering and high temperature (24 °С) and optimal conditions (20 °С) (7th day after flowering). Meanwhile, the expression level of PLR1 and UGT74S1 genes was lower under high temperature and poor watering than under optimal conditions. No association was found between lignan content in seeds of the studied flax varieties and the expression level of PLR1 and UGT74S1 genes. Our results provide important information on the contribution of genotype and environment to the expression of key genes of SDG synthesis, which is also necessary for the development of optimal approaches to obtain lignan-rich flax seeds.
Keywords
Full Text

About the authors
Е. N. Pushkova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Author for correspondence.
Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow
E. М. Dvorianinova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow
L. P. Povkhova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mnv-4529264@yandex.ru
119991, Moscow
T. А. Rozhmina
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Federal Research Center for Bast Fiber Crops
Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow; 172002, Torzhok
R. O. Novakovskiy
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow
Е. A. Sigova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow
А. А. Dmitriev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow
N. V. Melnikova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: mnv-4529264@yandex.ru
Russian Federation, 119991, Moscow
References
- Goyal A., Sharma V., Upadhyay N. et al. Flax and flaxseed oil: An ancient medicine & modern functional food // J. Food Sci. and Technology. 2014. V. 51. P. 1633–1653. https://doi.org/10.1007/s13197-013-1247-9
- Fombuena V., Petrucci R., Dominici F. et al. Maleinized linseed oil as epoxy resin hardener for composites with high bio content obtained from linen byproducts // Polymers. 2019. V. 11. P. https://doi.org/10.3390/polym11020301
- Corino C., Rossi R., Cannata S. et al. Effect of dietary linseed on the nutritional value and quality of pork and pork products: Systematic review and meta-analysis // Meat Science. 2014. V. 98. P. 679–688. https://doi.org/10.1016/j.meatsci.2014.06.041
- Singh K.K., Mridula D., Rehal J. et al. Flaxseed: A potential source of food, feed and fiber // Crit. Rev. in Food Sci. and Nutrition. 2011. V. 51. https://doi.org/10.1080/10408390903537241
- Akter Y., Junaid M., Afrose S.S. et al. A comprehensive review on Linum usitatissimum medicinal plant: Its phytochemistry, pharmacology, and ethnomedicinal uses // Mini Rev. in Med. Chemistry. 2021. V. 21. P. 2801–2834. https://doi.org/10.2174/1389557521666210203153436
- Imran M., Ahmad N., Anjum F.M. et al. Potential protective properties of flax lignan secoisolariciresinol diglucoside // Nutrition J. 2015. V. 14. P. 71. https://doi.org/10.1186/s12937-015-0059-3
- Parikh M., Netticadan T., Pierce G.N. Flaxseed: Its bioactive components and their cardiovascular benefits // Am. J. of Physiology. Heart and Circulatory Physiology. 2018. V. 314. P. H146–H159. https://doi.org/10.1152/ajpheart.00400.2017
- Kezimana P., Dmitriev A.A., Kudryavtseva A.V. et al. Secoisolariciresinol diglucoside of flaxseed and its metabolites: Biosynthesis and potential for nutraceuticals // Front. in Genetics. 2018. V. 9. https://doi.org/10.3389/fgene.2018.00641
- Mali A.V., Padhye S.B., Anant S. et al. Anticancer and antimetastatic potential of enterolactone: Clinical, preclinical and mechanistic perspectives // Europ. J. Pharmacology. 2019. V. 852. P. 107–124. https://doi.org/10.1016/j.ejphar.2019.02.022
- Cullis C.A. Genetics and Genomics of Linum. Cham, Switzerland: Springer Int. Publ., 2019. 270 р.
- Muir A.D., Westcott N.D. Flax: The genus Linum. Boca Raton, FL, USA: CRC Press, 2003. 320 р.
- Locke A., Schneiderhan J., Zick S.M. Diets for health: goals and guidelines // Am, Family Physician. 2018. V. 97. P. 721–728.
- Tse T.J., Guo Y., Shim Y.Y. et al. Availability of bioactive flax lignan from foods and supplements // Crit. Rev. Food Sci. Nutr. 2023. V. 63. P. 9843–9858. https://doi.org/10.1080/10408398.2022.2072807
- Chhillar H., Chopra P., Ashfaq M.A. Lignans from linseed (Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect // Crit. Rev. Food Sci. Nutr. 2021. V. 61. P. 2719–2741. https://doi.org/10.1080/10408398.2020.1784840
- Johnsson P., Kamal-Eldin A., Lundgren L.N. et al. HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds // J. Agricultural and Food Chemistry. 2000. V. 48. P. 5216–5219. https://doi.org/10.1021/jf0005871
- Ezzat S.M., Shouman S.A., Elkhoely A. et al. Anticancer potentiality of lignan rich fraction of six flaxseed cultivars // Sci. Reports. 2018. V. 8. P. 544. https://doi.org/10.1038/s41598-017-18944-0
- Garros L., Drouet S., Corbin C. et al. Insight into the influence of cultivar type, cultivation year, and site on the lignans and related phenolic profiles, and the health-promoting antioxidant potential of flax (Linum usitatissimum L.) seeds // Molecules. 2018. V. 23. https://doi.org/10.3390/molecules23102636
- Diederichsen A., Fu Y.-B. Flax genetic diversity as the raw material for future success // Genus. 2008. V. 32. P. 33.
- Markulin L., Corbin C., Renouard S. et al. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants // Planta. 2019. V. 249. P. 1695–1714. https://doi.org/10.1007/s00425-019-03137-y
- Hemmati S., von Heimendahl C.B., Klaes M. et al. Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. // Planta Medica. 2010. V. 76. P. 928–934. https://doi.org/10.1055/s-0030-1250036
- Hano C., Martin I., Fliniaux O. et al. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds // Planta. 2006. V. 224. P. 1291–1301. https://doi.org/10.1007/s00425-006-0308-y
- Von Heimendahl C.B., Schafer K.M., Eklund P. et al. Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum // Phytochemistry. 2005. V. 66. P. 1254–1263. https://doi.org/10.1016/j.phytochem.2005.04.026
- Hemmati S., Schmidt T.J., Fuss E. (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B // FEBS Letters. 2007. V. 581. P. 603–610. https://doi.org/10.1016/j.febslet.2007.01.018
- Ghose K., Selvaraj K., McCallum J. et al. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG) // BMC Plant Biology. 2014. V. 14. https://doi.org/10.1186/1471-2229-14-82
- Fofana B., Ghose K., McCallum J. et al. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax // BMC Plant Biology. 2017. V. 17. P. 35. https://doi.org/10.1186/s12870-017-0982-x
- Wang L., Stegemann J.P. Extraction of high quality RNA from polysaccharide matrices using cetyltrimethylammonium bromide // Biomaterials. 2010. V. 31. P. 1612–1618. https://doi.org/10.1016/j.biomaterials.2009.11.024
- Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data // Bioinformatics. 2014. V. 30. P. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
- Krasnov G.S., Dmitriev A.A., Kudryavtseva A.V. et al. PPLine: An automated pipeline for SNP, SAP, and splice variant detection in the context of proteogenomics // J. of Proteome Res. 2015. V. 14. P. 3729–3737. https://doi.org/10.1021/acs.jproteome.5b00490
- Dmitriev A.A., Pushkova E.N., Novakovskiy R.O. et al. Genome sequencing of fiber flax cultivar Atlant using Oxford Nanopore and Illumina platforms // Front, Genetics. 2020. V. 11. https://doi.org/10.3389/fgene.2020.590282
- Dalisay D.S., Kim K.W., Lee C. et al. Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: Integrated omics and MALDI mass spectrometry imaging // J, Nat, Products. 2015. V. 78. P. 1231–1242. https://doi.org/10.1021/acs.jnatprod.5b00023
Supplementary files
