Polymorphism of antioxidant genes and overweight in children

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Oxidative stress is one of the components of the pathological process leading to the development of obesity. The level of formation of free radical products is controlled by the antioxidant system. Gene polymorphisms influence the level and/or activity of the encoded enzymes. The aim of the work was to investigate the association of SNP in the genes of the antioxidant system with the risk of overweight in children and adolescents. The material for the study were DNA samples from 279 overweight children and 131 children from the control group. Genotyping was performed for rs6721961 (–617G>T) NFE2L2, rs4998557 (7958G>A) SOD1, rs4880 (47C>T Ala16Val) SOD2, rs1001179 (–262C>T) CAT, rs713041 (718C>T) GPX4, rs66 2 (Gln192Arg) PON1. It has been shown that the –617GT genotype (rs6721961) NFE2L2 is associated with decreased of overweight risk children. An increased risk of developing overweight was detected for heterozygotes –262CT for rs1001179 CAT and the –262T allele. As a result of the analysis of intergenic interactions, a 6-locus genotype was identified that is associated with a reduced risk of overweight.

全文:

受限制的访问

作者简介

М. Shkurat

Southern Federal University; Меdical center “Nauka”

Email: lenmash@mail.ru
俄罗斯联邦, 344090, Rostov-on-Don; 344000, Rostov-on-Don

E. Маshkina

Southern Federal University

编辑信件的主要联系方式.
Email: lenmash@mail.ru
俄罗斯联邦, 344090, Rostov-on-Don

N. Мilyutina

Southern Federal University

Email: lenmash@mail.ru
俄罗斯联邦, 344090, Rostov-on-Don

E. Теplyakova

Rostov State Medical University

Email: lenmash@mail.ru
俄罗斯联邦, 344022, Rostov-on-Don

Т. Shkurat

Southern Federal University; Меdical center “Nauka”

Email: lenmash@mail.ru
俄罗斯联邦, 344090, Rostov-on-Don; 344000, Rostov-on-Don

参考

  1. World Health Organization. – Childhood Obesity n.d. https://www.who.int/dietphysicalactivity/childhood/en/
  2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128 9 million children, adolescents, and adults // Lancet. 2017.V. 390. № 10113. P. 2627–2642. https://doi.org/10.1016/S0140-6736(17)32129-3
  3. Di Cesare M., Sorić M., Bovet P. et al. The epidemiological burden of obesity in childhood: A worldwide epidemic requiring urgent action // BMC Med. 2019. V. 17. P. 212. https://doi.org/ 10.1186/s12916-019-1449-8
  4. Тутельян В.A., Батурин А.К., Конь И.Я. и др. Распространенность ожирения и избыточной массы тела среди детского населения РФ: мультицентровое исследование // Педиатрия: журн. им. Г. Н. Сперанского. 2014. Т. 93. № 5. С. 28–31.
  5. Бочарова О.В., Теплякова Е.Д. Ожирение у детей и подростков-проблема здравоохранения XXI века // Казанский мед. журн. 2020. Т. 101. № 3. С. 381–388. https://doi.org/ 10.17816/KMJ2020-381
  6. Han J.C., Lawlor D.A., Kimm S.Y. Childhood obesity // The Lancet. 2010. V. 375. P. 1737–1748. https://doi.org/ 10.1016/S0140-6736д(10)60171-7
  7. Geng J., Ni Q., Sun W. et al. The links between gut microbiota and obesity and obesity related diseases // Biomed Pharmacother. 2022. V. 147. https://doi.org/ 10.1016/j.biopha.2022.112678
  8. Stenzel A., Carvalho R., Jesus P. et al. Serum antioxidant associations with metabolic characteristics in metabolically healthy and unhealthy adolescents with severe obesity: an observational study // Nutrients. 2018. V. 10. P. 150. https://doi.org/ 10.3390/nu10020150
  9. González-Domínguez A., Visiedo F., Domínguez-Riscart J. et al. Blunted reducing power generation in erythrocytes contributes to oxidative stress in prepubertal obese children with insulin resistance // Antioxidants. 2021. V. 10. P. 244. https://doi.org/ 10.3390/antiox10020244
  10. Savini I., Catani M.V., Evangelista D. et al. Obesity-associated oxidative stress: strategies finalized to improve redox state // Int. J. Mol. Sci. 2013. V. 14. P. 10497–10538. https://doi.org/ 10.3390/ijms140510497
  11. Шестопалов А.В., Давыдов В.В., Туманян Г.Ц. и др. Содержание адипокинов и миокинов в крови детей и подростков с различным генотипом по полиморфизму rs662 гена параоксоназы-1 // Ожирение и метаболизм. 2023. Т. 20. № 3. С. 227–236. https://doi.org/10.14341/omet13006
  12. Kaspar J.W., Niture S.K., Jaiswal A.K. Nrf2: INrf2 (Keap1) signaling in oxidative stress // Free Radic. Biol. Med. 2009. V. 47. P. 1304–1309. https://doi.org/ 10.1016/j.freeradbiomed.2009.07.035
  13. Baird L., Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway // Mol. Cell. Biol. 2020. V. 40. https://doi.org/ 10.1128/MCB.00099-20
  14. Wang Z., Zuo Z., Li L. et al. Nrf2 in adipocytes // Arch. Pharm. Res. 2020. V. 43. P. 350–360. https://doi.org/ 10.1007/s12272-020-01227-0
  15. Hinney A., Hebebrand J. Polygenic obesity in humans // Obes. Facts. 2008. V. 1. № 1. P. 35–42. https://doi.org/ 10.1159/000113935
  16. Meyre D., Delplanque J., Chèvre J.C. et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations // Nat. Genetics. 2009. V. 41. № 2. P. 157–159. https://doi.org/ 10.1038/ng.301
  17. Lu Y., Loos R.J. Obesity genomics: Assessing the transferability of susceptibility loci across diverse populations // Genome Med. 2013. V. 5. № 6. P. 55. https://doi.org/ 10.1186/gm459
  18. Schlauch K.A., Kulick D., Subramanian K. et al. Single-nucleotide polymorphisms in a cohort of significantly obese women without cardiometabolic diseases // Int. J. Obesity. 2019. V. 43. № 2. P. 253–262. https://doi.org/ 10.1038/s41366-018-0181-3
  19. Шкурат М.А., Машкина Е.В., Милютина Н.П., Шкурат Т.П. Роль полиморфизма редокс-чувствительных генов в механизмах окислительного стресса при ожирении и метаболических заболеваниях // Экологическая генетика. 2023. Т. 21. № 3. С. 261–287. https://doi.org/ 10.17816/ecogen562714
  20. Bradfield J.P., Vogelezang S., Felix J.F. et al. A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity // Hum. Mol. Genet. 2019. V. 28. № 19. P. 3327–3338. https://doi.org/ 10.1093/hmg/ddz161
  21. Трифонова Е.А., Попович А.А., Вагайцева К.В. и др. Метод мультиплексного генотипирования полиморфных вариантов генов, ассоциированных с ожирением и индексом массы тела // Генетика. 2019. Т. 55. № 10. С. 1218–1230. https://doi.org/10.1134/S001667581910014X
  22. Трифонова Е.А., Попович А.А., Макеева О.А. и др. Репликативный анализ ассоциаций генетических маркеров с ожирением в российской популяции // Генетика. 2021. Т. 57. № 5. С. 604–610. https://doi.org/ 10.31857/S0016675821050131
  23. https://www.who.int/ru/news-room/fact-sheets/detail/obesity-and-overweight
  24. https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
  25. Shimoyama Y., Mitsuda Y., Hamajima N., Niwa T. Polymorphisms of Nrf2, an antioxidative gene, are associated with blood pressure in Japanese // Nagoya J. Med. Sci. 2014. V. 76. № 1–2 P. 113–120.
  26. Vasileva L.V., Savova M.S., Amirova K.M. et al. Obesity and NRF2-mediated cytoprotection: Where is the missing link? // Pharmacol Res. 2020. V. 156. № 6. https://doi.org/ 10.1016/j.phrs.2020.104760
  27. Xia Y., Zhai X., Qiu Y. et al. The Nrf2 in obesity: A friend or foe? // Antioxidants. 2022. V. 11. № 10. https://doi.org/ 10.3390/antiox11102067
  28. Forsberg L., Lyrenäs L., De Faire U., Morgenstern R. A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels // Free Radic Biol Med. 2001. V. 30. P. 500–505. https://doi.org/ 10.1016/S0891-5849(00)00487-1.
  29. Quick S.K., Shields P.G., Nie J. et al. Effect modification by catalase genotype suggests a role for oxidative stress in the association of hormone replacement therapy with postmenopausal breast cancer risk // Cancer Epidemiology Biomarkers & Prevention. 2008. V. 17. № 5. P. 1082–1087. https://doi.org/ 10.1158/1055-9965.EPI-07-2755
  30. Saify K., Saadat I., Saadat M. Influence of A-21T and C-262T genetic polymorphisms at the promoter region of the catalase (CAT) on gene expression // Environ Health Prev Med. 2016. V. 21. P. 382–386. https://doi.org/ 10.1007/s12199-016-0540-4
  31. Galasso M., Gambino S., Romanelli M.G. et al. Browsing the oldest antioxidant enzyme: catalase and its multiple regulation in cancer // Free Radic. Biol. Med. 2021. V. 172. P. 264–272. https://doi.org/ 10.1016/j.freeradbiomed.2021.06.010
  32. Galasso M., Pozza E., Chignola R. et al. The rs1001179 SNP and CpG methylation regulate catalase expression in chronic lymphocytic leukemia // Cell Mol. Life Sci. 2022. V. 79. № 10. P. 521. https://doi.org/ 10.1007/s00018-022-04540-7
  33. Chistiakov D.A., Savost’anov K.V., Turakulov R.I. et al. A new type 1 diabetes susceptibility locus containing the catalase gene (chromosome 11p13) in a Russian population // Diabetes/Metabolism Research and Reviews. 2004. V. 20. № 3. P. 219–224. https://doi.org/ 10.1002/dmrr.442
  34. Ahn J., Gammon M.D., Santella R.M. et al. Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use // Am. J. Epid. 2005. V. 162. № 10. P. 943–952. https://doi.org/ 10.1093/aje/kwi306
  35. Goth L., Nagy T., Kosa Z. et al. Effects of rs769217 and rs1001179 polymorphisms of catalase gene on blood catalase, carbohydrate and lipid biomarkers in diabetes mellitus // Free Radic Res. 2012. V. 46. P. 1249–1257. https://doi.org/ 10.3109/10715762.2012.702899
  36. Goulas A., Agapakis D., Apostolidis A. et al. Association of the common catalase gene polymorphism rs1001179 with glycated hemoglobin and plasma lipids in hyperlipidemic patients // Biochem. Genet. 2017. V. 55. P. 77–86. https://doi.org/ 10.1007/s10528-016-9777-2
  37. Glorieux C., Zamocky M., Sandoval J.M. et al. Regulation of catalase expression in healthy and cancerous cells // Free Radic. Biol. Med. 2015. V. 87. P. 84–97. https://doi.org/ 10.1016/j.freeradbiomed.2015.06.017
  38. Полоников А.В., Клёсова Е.Ю., Азарова Ю.Э. Биоинформатические инструменты и интернет-ресурсы для оценки регуляторного потенциала полиморфных локусов, установленных полногеномными ассоциативными исследованиями мультифакториальных заболеваний (обзор) // Научные результаты биомедицинских исследований. 2021. Т. 7. № 1. С. 15–31. https://doi.org/ 10.18413/2658-6533-2020-7-1-0-2
  39. Shimoda-Matsubayashi S., Matsumine H., Kobayashi T. et al. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease // Biochem. Biophys. Res. Commun. 1996. V. 226. № 2. P. 561–565. https://doi.org/ 10.1006/bbrc.1996.1394
  40. Sutton A., Khoury H., Prip-Buus C. et al. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria // Pharmacogenetics. 2003. V. 13. № 3. P. 145–157. doi: 10.1097/01.fpc.0000054067.64000.8f
  41. Bastaki M., Huen K., Manzanillo P. et al. Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans // Pharmacogenet. Genomics. 2006. V. 16. P. 279–286. https://doi.org/ 10.1097/01.fpc.0000199498.08725.9c
  42. Cannata A., De Luca C., Andolina G. et al. Influence of the SOD2 A16V gene polymorphism on alterations of redox markers and erythrocyte membrane fatty acid profiles in patients with multiple chemical sensitivity // Biomed. Rep. 2021. V. 15. № 6. P. 101. https://doi.org/ 10.3892/br.2021.1477
  43. Giusti B., Vestrini A., Poggi C. et al. Genetic polymorphisms of antioxidant enzymes as risk factors for oxidative stress-associated complications in preterm infants // Free Radic. Res. 2012. V. 46. P. 1130–1139. https://doi.org/ 10.3109/10715762.2012.692787
  44. Palmirotta R., Barbanti P., De Marchis M.L. et al. Is SOD2 Ala16Val polymorphism associated with migraine with aura phenotype? // Antioxid. Redox Signal. 2015. V. 22. P. 275–279. https://doi.org/ 10.1089/ars.2014.6069
  45. Synowiec E., Wigner P., Cichon N. et al. Single-nucleotide polymorphisms in oxidative stress-related genes and the risk of a stroke in a Polish population – a preliminary study // Brain Sci. 2021. V. 11. https://doi.org/ 10.3390/brainsci11030391
  46. Азарова Ю.Э., Гуреева А.В., Постникова М.И. и др. Связь однонуклеотидного полиморфизма rs4880 гена SOD2 с развитием микрососудистых осложнений сахарного диабета 2-го типа // Науч. результаты биомед. исследований. 2023. Т. 9. № 4. С. 461–473. https://doi.org/ 10.18413/2658-6533-2023-9-4-0-3
  47. De Mello A.H., Costa A.B., Engel J.D.G., Rezin G.T. Mitochondrial dysfunction in obesity // Life Sci. 2018. V. 192. P. 26-32. doi: 10.1016/j.lfs.2017.11.019
  48. Prasun P. Mitochondrial dysfunction in metabolic syndrome // Biochim. Biophys. Acta Mol Basis Dis. 2020. V. 1866 (10). https://doi.org/ 10.1016/j.bbadis.2020.165838

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The nature of intergenic interactions in the formation of overweight in children (Fruchterman–Reinhold dendrogram). The information value of each individual locus is represented at the vertices of the polyhedron; the information value of interaction for a pair of loci is represented on the lines connecting them (the effect of interaction between SNPs is characterized by the color of the line: red – pronounced synergy, orange – moderate synergy, green – moderate antagonism, brown – additive interaction, blue – redundancy or independence).

下载 (190KB)

版权所有 © Russian Academy of Sciences, 2024