The role of different subunits of INO80 remodeling complex in repair chromatin assembly in yeast Saccharomyces cerevisiae

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Reparative chromatin assembly is an important step in maintaining genome stability. The correct assembly of chromatin is provided by histone chaperones, whose dysfunction can lead to the development of various forms of cancer and a number of hereditary diseases in humans. The effect of remodeling factors completes chromatin repair. The yeast chromatin remodeling complex INO80 plays an important role in chromatin architecture. We used induced mutagenesis and real-time PCR to study the role of INO80 in chromatin repair assembly. In double mutants ies5Δ hsm3Δ(hif1Δ), defects in the structure of nucleosomes caused by mutations hsm3Δ and hif1Δ lead to hypersensitivity of cells to UV radiation and the disappearance of hsm3- and hif1-specific mutagenesis. Double mutants carrying the nhp10Δ mutation and hsm3Δ or hif1Δ mutations were indistinguishable from a single mutant in terms of the lethal effect of UV irradiation, however, the high UV-induced mutagenesis characteristic of all mutations disappeared. Thus, we found that mutations in the genes controlling the subunits of the INO80 complex can exhibit strong interactions with mutations in histone chaperone genes. We have confirmed the hypothesis that the Him1 protein performs a chaperone function in the process of reparative chromatin assembly.

Full Text

Restricted Access

About the authors

T. А. Evstyukhina

Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”; Kurchatov Genome Center—Petersburg Nuclear Physics Institute

Author for correspondence.
Email: alekseeva_ea@pnpi.nrcki.ru
Russian Federation, 188300, Gatchina; 188300, Gatchina

E. A. Alekseeva

Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”; Kurchatov Genome Center—Petersburg Nuclear Physics Institute

Email: alekseeva_ea@pnpi.nrcki.ru
Russian Federation, 188300, Gatchina; 188300, Gatchina

I. I. Skobeleva

Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”

Email: alekseeva_ea@pnpi.nrcki.ru
Russian Federation, 188300, Gatchina

V. T. Peshekhonov

Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”; Kurchatov Genome Center—Petersburg Nuclear Physics Institute

Email: alekseeva_ea@pnpi.nrcki.ru
Russian Federation, 188300, Gatchina; 188300, Gatchina

V. G. Korolev

Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”; Kurchatov Genome Center—Petersburg Nuclear Physics Institute

Email: alekseeva_ea@pnpi.nrcki.ru
Russian Federation, 188300, Gatchina; 188300, Gatchina

References

  1. Luger K., Mader A.W., Richmond R.K. et al. Crystal structure of the nucleosome core particle at 2.8 A° resolution // Nature. 1997. V. 389. P. 251–260. https://doi.org/10.1038/38444
  2. Ransom M., Dennehey B.K., Tyler J.K. Chaperoning histones during DNA replication and repair // Cell. 2010. V. 140, P. 183–195. https://doi.org/10.1016/j.cell.2010.01.004
  3. Kouzarides T. Chromatin modifications and their function // Cell. 2007. V. 128. P. 693–705. https://doi.org/10.1016/j.cell.2007.02.005
  4. Gaillard P.H., Martini E.M., Kaufman P.D. et al. Chromatin assembly coupled to DNA repair: A new role for chromatin assembly factor 1 // Cell. 1996. V. 86. P. 887–96. https://doi.org/10.1016/s0092-8674(00)80164-6
  5. Evstyukhina T.A., Alekseeva E.A., Fedorov D.V. et al. Genetic analysis of the Hsm3 protein fFunction in yeast Saccharomyces cerevisiae NuB4 complex // Genes. 2021. V. 12. https://doi.org/10.3390/ genes12071083
  6. Becker P.B., Horz W. ATP-dependent nucleosome remodeling // Annu. Rev. Biochem. 2002. V. 71. P. 247–273. https://doi.org/10.1146/annurev.biochem.71.110601.135400
  7. Smith C.L., Peterson C.L. ATP-dependent chromatin remodeling // Curr. Top. Dev. Biol. 2005. V. 65. P. 115–148. https://doi.org/10.1016/S0070-2153(04)65004-6
  8. Shen X., Mizuguchi G., Hamiche A., Wu C. A chromatin remodelling complex involved in transcription and DNA processing // Nature. 2000. V. 406. P. 541–544. https://doi.org/10.1038/35020123
  9. Morrison A., Highland J., Krogan N. et al. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair // Cell. 2004. V. 119. № 6. P. 767–775. https://doi.org/10.1016/j.cell.2004.11.037
  10. Morrison A., Kim J.-A., Person M.D. et al. Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses // Cell. 2007. V. 130. P. 499–511. https://doi.org/10.1016/j.cell.2007.06.010
  11. Van Attikum H., Fritsch O., Hohn B., Gasser S.M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand repair // Cell. 2004. V. 119. P. 777–788. https://doi.org/10.1016/j.cell.2004.11.033
  12. Tosi A., Haas C., Herzog F. et al. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex // Cell. 2013. V. 154. P. 1207–1219. https://doi.org/10.1016/j.cell.2013.08.016
  13. Yao W., King D.A., Beckwith S.L. et al. The INO80 complex requires the Arp5-Ies6 subcomplex for chromatin remodeling and metabolic regulation // Mol. Cel. Biol. 2016. V. 36. P. 979–991. https://doi.org/10.1128/MCB.00801-15
  14. Falbo K., Alabert C., Katou Y. et al. Involvement of a chromatin remodeling complex in damage tolerance during DNA replication // Nat. Struct. Mol. Biol. 2009. V. 16. P. 1167–1172. https://doi.org/10.1038/nsmb.1686
  15. Shen X., Choi E., Wu C. Involvement of actin-related proteins in ATP-dependent chromatin remodeling // Mоl. Cell. 2003. V. 12. P. 147–155. https://doi.org/10.1016/s1097-2765(03)00264-8
  16. Ray S., Grove A. The yeast high mobility group protein HMO2 domains of the chromatin-remodeling complex INO80, binds DNA ends // Nucl. Acids Res. 2009. V. 37. P. 6389–6399. https://doi.org/10.1093/nar/gkp695
  17. Ray S., Grove A. Interaction of Saccharomyces cerevisiae HMO2 domains with distorted DNA // Biochemistry. 2012. V. 51. P. 1825–1835. https://doi.org/10.1021/bi201700h
  18. Fillingham J., Recht J., Silva A.C. et al. Chaperone control of the activity and specificity of the histone H3 acetyltransferase RTT109 // Mol. Cell. Biol. 2008. V. 28. P. 4342–4353. https://doi.org/10.1128/MCB.00182-08
  19. Campos E.I., Fillingham J., Li J. et al. The program for processing newly synthesized histones H3.1 and H4 // Nat. Struct. Mol. Biol. 2010. V. 17. P. 1343–1351. PubMed ID: 20953179
  20. Barman H.K., Takami Y., Nashijima H. et al. Histone acetyltransferase-1 regulates integrity of cytosolic histone H3-H4 containing complex // Biophys. Res. Commun. 2008. V. 373. P. 624–630. https://doi.org/10.1016/j.bbrc.2006.05.079
  21. Jasencakova Z., Scharf A.N., Corpet A. et al. Replication stress interferes with histone recycling and predeposition marking of new histones // Mol. Cell. 2010. V. 37. P. 736–743. https://doi.org/10.1016/j.molcel.2010.01.033
  22. Ai X., Parthun M.R. The nuclear Hat1p/Hat2p complex: A molecular link between type B histone acetyltransferases and chromatin assembly // Mol. Cell. 2004. V. 14. P.195–205. https://doi.org/10.1016/s1097-2765(04)00184-4
  23. Poveda A., Pamblanco M., Tafrov S. et al. Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus // J. Biol. Chem. 2004. V. 279. P. 16033–16043. https://doi.org/10.1074/jbc.M314228200
  24. Verreault A., Kaufman P.D., Kobayashi R., Stillman B. Nucleosomal DNA regulates the core-histone-binding subunitof the human Hat1 acetyltransferase // Curr. Biol. 1998. V. 8. P. 96–108. https://doi.org/10.1016/s0960-9822(98)70040-5
  25. Suganuma T., Pattenden S.G., Workman J.L. Diverse functions of WD40 repeat proteins in histone recognition // Genes Dev. 2008. V. 22. P. 1265–1268. https://doi.org/10.1101/gad.1676208
  26. Song J.J., Garlick J.D., Kingston R.E. Structural basis of histone H4 recognition by p55 // Genes Dev. 2008. V. 22. P. 1313–1318. https://doi.org/10.1101/gad.1653308
  27. Furuyama T., Dalal Y., Henikoff S. Chaperone-mediated assembly of centromeric chromatin in vitro // Proc. Natl Acad. Sci. USA. 2006. V. 103. P. 6172–6177. https://doi.org/10.1073/pnas.0601686103
  28. Gavin A.C., M. Bösche M., Krause R. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes // Nature. 2002. V. 415. P. 141–147. https://doi.org/10.1038/415141a
  29. Blackwell J.S., Wilkinson S.T., Mosammaparast N., Pemberton L.F. Mutational analysis of H3 and H4 N termini reveals distinct roles in nuclear import // J. Biol. Chem. 2007. V. 282. P. 20142–20150. https://doi.org/10.1074/jbc.M701989200
  30. Ge Z., Wang H., Parthun M.R. Nuclear Hat1p complex (NuB4) components participate in DNA repair-linked chromatin reassembly // J. Biol. Chem. 2011. V. 286. P. 16790–16799. https://doi.org/10.1074/jbc.M110.216846
  31. Захаров И.А., Кожин С.А., Кожина Т.А. и др. Сборник методик по генетике дрожжей-сахаромицетов. Л.: Наука, 1984. изд. 2-е. 144 с.
  32. Ковальцова С.В., Королев В.Г. Штамм дрожжей Saccharomyces cerevisiae для тестирования мутагенов окружающей среды на основе взаимодействия мутаций rad2 и him1 // Генетика. 1996. Т. 32. № 3. С. 366–372.
  33. Fedorova I.V., Kovaltzova S.V., Gracheva L.M. et al. Requirement of HSM3 gene for spontaneous mutagenesis in Saccharomyces cerevisiae // Mutat. Res. 2004. V. 554. P. 65–75.
  34. Lea C.A., Coulson D.E. The distribution of the number of mutants in bacterial populations // J. Genet. 1949. V. 49. P. 264–285. https://doi.org/10.1007/BF02986080
  35. Khromov-Borisov N.N., Saffi J., Henriques J.A.P. Perfect order plating: principal and applications // TTO1. 2002.TO2638
  36. De Koning L., Corpet A., Haber J.E., Almouzni G. Histone chaperones: An escort network regulating histone traffic // Nat. Struct. Mol. Biol. 2007. V. 14. P. 997–1007. https://doi.org/10.1038/nsmb1318
  37. Burgess R.J., Zhang Z. Histone chaperones in nucleosome assembly and human disease // Nat. Struct. Mol. Biol. 2013. V. 20. P. 14–22. https://doi.org/10.1038/nsmb2461
  38. Chai B., Huang J., Cairns B., Laurent B. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair // Genes Dev. 2005. V. 19. P. 1656–1661. https://doi.org/10.1101/gad.1273105
  39. Shim E., Ma J., Oum J. et al. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks // Mol. Cell. Biol. 2005. V. 25. P. 3934–3944. https://doi.org/10.1128/MCB.25.10.3934-3944.2005
  40. Alekseeva E.A., Evstyukhina T.A., Peshekhonov V.T., Korolev V.G. Participation of the HIM1 gene of yeast Saccharomyces cerevisiae in the error-free branch of post-replicative repair and role Polη in him1-dependent mutagenesis // Curr. Genet. 2021.V. 67. P. 141–151. https://doi.org/10.1007/s00294-020-01115-6
  41. Evstyukhina T.A., Alekseeva E.A., Peshekhonov V.T. et al. The role of chromatin assembly factors in induced mutagenesis at low levels of DNA damage // Genes. 2023. V. 14. https://doi.org/10.3390/genes14061242
  42. Chambers A.L., Ormerod G., Durley S.C. et al. The INO80 chromatin remodeling complex prevents polyploidy and maintains normal chromatin structure at centromeres // Genes Dev. 2012. V. 26. P. 2590–2603. https://doi.org/10.1101/gad.199976.112
  43. Carrozza M.J., Li B., Florens L. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription // Cell. 2005. V. 123. P. 581–592. https://doi.org/10.1016/j.cell.2005.10.023
  44. Keogh M.C., Kurdistani S.K., Morris S.A. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex // Cell. 2005. V. 123. P. 593–605. https://doi.org/10.1016/j.cell.2005.10.025
  45. Chen X.-F., Kuryan B., Kitada T. et al. The Rpd3 core complex is a chromatin stabilization module // Curr. Biol. 2012. V. 22. P. 56–63. https://doi.org/10.1016/j.cub.2011.11.042
  46. Kelberg E.P., Kovaltsova S.V., Alekseev S.Yu. et al. HIM1, a new yeast Saccharomyces cerevisiae gene playing a role in control of spontaneous and induction mutagenesis // Mutat. Res. 2005. V. 578. P. 64–78. https://doi.org/10.1016/j.mrfmmm.2005.03.003
  47. Keck K.M., Pemberton L.F. Histone chaperon link histone nuclear import and chromatin assembly // Biochim. Biophys. Acta. 2012. V. 1819. P. 277–289. https://doi.org/10.1016/j.bbagrm.2011.09.007
  48. Евстюхина Т.А., Алексеева Е.А., Федоров Д.В. и др. Роль ремодулирующих комплексов CHD1 и ISWI в контроле спонтанного и УФ-индуцированного мутагенеза у дрожжей Saccharomyces cerevisiae // Генетика. 2017. Т. 53. № 2. С. 173–180.
  49. Sun Z., Hsiao J., Fay D.S., Stern D.F. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint // Science. 1998. V. 281. P. 272–274. https://doi.org/10.1126/science.281.5374.272.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. UV light sensitivity and frequency of UV-induced mutagenesis at the CAN1 locus in the wild-type strain and the ies6Δ mutant diploid strain when treated with different doses of UV light. The graphs show the standard errors of the mean (± SEM) obtained from five independent experiments.

Download (134KB)
3. Figure 2. Sensitivity to UV light and frequency of UV-induced mutagenesis at the ADE4-ADE8 loci in the wild-type and mutant strain ies5Δ (a) and mutant strain nhp10Δ (b) when treated with different doses of UV light.

Download (287KB)
4. Figure 3. Sensitivity to UV light and frequency of UV-induced mutagenesis at the ADE4-ADE8 loci in the wild-type and mutant strains rad2Δ, rad2Δ ies5Δ, and rad2Δ nhp10Δ when treated with different doses of UV light.

Download (179KB)
5. Figure 4. Sensitivity to UV light and frequency of UV-induced mutagenesis at the ADE4-ADE8 loci in the wild-type and mutant strains ies5Δ hsm3Δ, ies5Δ hif1Δ, and ies5Δ him1Δ (a) and nhp10Δ hsm3Δ, nhp10Δ hif1Δ, and nhp10Δ him1Δ (b) when treated with different doses of UV light.

Download (366KB)
6. Figure 5. Sensitivity to UV light and frequency of UV-induced mutagenesis at the ADE4-ADE8 loci of the wild-type and ies5Δ rpd3Δ and rpd3Δ mutant strains when treated with different doses of UV light.

Download (158KB)
7. Figure 6. Bar graphs show the relative normalized expression of the RNR3 gene in the wild-type and mutant strains: ies5Δ, ies5Δ him1Δ, ies5Δ hsm3Δ, and ies5Δ hif1Δ (a); nhp10Δ, nhp10Δ him1Δ, nhp10Δ hsm3Δ and nhp10Δ hif1Δ (b) before and after irradiating them with UV light (after UV irradiation, cells were incubated for four hours at 30°C in a thermostat for induction), the UV dose was 252 J/m2; * p < 0. 05, Student's t-test.

Download (212KB)

Copyright (c) 2024 Russian Academy of Sciences