Calpastatin CAST and Androgen Receptor AR Gene Polymorphism Studyas Meat Quality Predictors in Reindeer Rangifer tarandus
- Authors: Konorov E.A.1,2, Kurbakov K.A.1,2, Semina M.T.1, Stolpovsky Y.A.1, Layshev K.A.1,3
-
Affiliations:
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
- Center for Interdisciplinary Research of Food Security Problems
- Issue: Vol 60, No 8 (2024)
- Pages: 48-53
- Section: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://rjpbr.com/0016-6758/article/view/667213
- DOI: https://doi.org/10.31857/S0016675824080046
- EDN: https://elibrary.ru/bfrmeb
- ID: 667213
Cite item
Abstract
Marker-based selection on reindeer meat productivity is in the early stages of development, which requires the study of variability in candidate genes for meat productivity. We chose the calpastatin and androgen receptor genes as such genes to study. Polymorphisms and indels in the androgen receptor gene have been associated with height and weight characteristics in different domesticated animal species. Variation in the region of the calpastatin CAST gene, according to the results of many studies, has been associated with meat quality and meat productivity of livestock. Principal component analysis of CAST variability has grouped together wild and domestic deer from Yakutia, as well as wild and domestic deer from the Amur region, which implies gene flow between local breeds of domesticated deer and wild populations. Moreover, in the case of three microsatellite loci found in this study in the intron of the androgen receptor, principal component analysis separated wild and domestic deer.
Full Text

About the authors
E. A. Konorov
Vavilov Institute of General Genetics, Russian Academy of Sciences; Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Author for correspondence.
Email: casqy@yandex.ru
Russian Federation, Moscow, 119991; Moscow, 109316
K. A. Kurbakov
Vavilov Institute of General Genetics, Russian Academy of Sciences; Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Email: casqy@yandex.ru
Russian Federation, Moscow, 119991; Moscow, 109316
M. T. Semina
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: casqy@yandex.ru
Russian Federation, Moscow, 119991
Yu. A. Stolpovsky
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: casqy@yandex.ru
Russian Federation, Moscow, 119991
K. A. Layshev
Vavilov Institute of General Genetics, Russian Academy of Sciences; Center for Interdisciplinary Research of Food Security Problems
Email: casqy@yandex.ru
Russian Federation, St. Petersburg, Moscow, 119991; Pushkin, 196608
References
- Trakooljul N. Molecular and association analyses of the androgen receptor gene as a candidate for production and reproduction traits in pigs. Göttingen: Cuvillier Verlag, 2004. 127 р.
- Трухачев В.И., Криворучко А.Ю., Скрипкин В.С. и др. Новые однонуклеотидные замены (SNP) в гене андрогенного рецептора (AR) у российской породы овец Джалгинский меринос //Генетика. 2016. Т. 52. № 10. С. 1169–1175. https://doi.org/10.7868/S0016675816100131
- Xiong J., Yang F., Hua G. et al. Identification of genetic variants within androgen receptor gene of Sika deer and its association with antler production // J. of Animal and Veterinary Advances. 2012. V. 11. № 12. P. 2059–2063.
- Ramadevi B., Kumari B. P., Sudhakar K. et al. Polymorphism of the Ovine Calpastatin (CAST) gene and its association with productive traits in Nellore sheep // J. of Animal Res. 2020. V. 10. № 6. P. 881–887. https://doi.org/10.1088/1755-1315/613/1/012130
- Corva P., Soria L., Schor A. et al. Association of CAPN1 and CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina // Genet. Mol. Biol. 2007. V. 30. P. 1064–1069. https://doi.org/10.1590/S1415-47572007000600006
- Li X., Ekerljung M., Lundström K., Lundén A. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden // Meat Science. 2013. V. 94. № 2. P. 153–158. https://doi.org/10.1016/j.meatsci.2013.01.010
- Ropka-Molik K., Bereta A., Tyra M. et al. Association of calpastatin gene polymorphisms and meat quality traits in pig // Meat Science. 2014. V.. 97. № 2. P. 143–150. https://doi.org/10.1016/j.meatsci.2014.01.021
- Kholodova M.V., Baranova A.I., Mizin I.A. et al. A genetic predisposition to chronic wasting disease in the reindeer Rangifer tarandus in the Northern European part of Russia // Biology Bulletin. 2019. V. 46. P. 555–561. https://doi.org/10.1134/S1062359019060074
- Курбаков К.А., Коноров Е.А., Семина М.Т., Столповский Ю.А. Распространение ассоциированных с болезнью хронического изнурения аллелей гена PRNP у диких и домашних северных оленей Rangifer tarandus на территории России // Генетика. 2022. Т. 58. № 2. С. 163–168. https://doi.org/10.31857/S0016675822020102
- Ye J., Coulouris G., Zaretskaya I. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction // BMC Bioinformatics. 2012. V.. 13. № 1. P. 1–11. https://doi.org/10.1186/1471-2105-13-134
- Kluesner M.G., Nedveck D.A., Lahr W.S. et al. EditR: A method to quantify base editing from Sanger sequencing // The CRISPR J. 2018. V.. 1. № 3. P. 239–250. https://doi.org/10.1089/crispr.2018.0014
- Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput // Nucl. Ac. Res. 2004. V.. 32. № 5. P. 1792–1797. https://doi.org/10.1093/nar/gkh340
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. № 6. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
- Peakall R.O.D., Smouse P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Notes. 2006. V. 6. № 1. P. 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
- Lê S., Josse J., Husson F. FactoMineR: An R package for multivariate analysis // J. Stat. Software. 2008. V.. 25. P. 1–18. https://doi.org/10.18637/jss.v025.i01
- Suleman M., Khan S.U., Riaz M.N. et al. Calpastatin (CAST) gene polymorphism in Kajli, Lohi and Thalli sheep breeds // African J. Biotechnology. 2012. V. 11. № 47. P. 10655–10660. https://doi.org/10.5897/AJB11.2478
- Calvo J.H., Iguácel L.P., Kirinus J.K. et al. A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness // Meat Science. 2014. V.. 96. № 2. P. . 775–782. https://doi.org/10.1016/j.meatsci.2013.10.003
- Svishcheva G., Babayan O., Sipko T. et al. Genetic differentiation between coexisting wild and domestic Reindeer (Rangifer tarandus L. 1758) in Northern Eurasia // Genetic Res. 2022. V. 3. № 6. P.. 1–14. https://doi.org/10.46265/genresj.UYML5006
- Zhao H., Wu M., Wang S. et al. Identification of a novel 24 bp insertion–deletion (indel) of the androgen receptor gene and its association with growth traits in four indigenous cattle breeds // Archives Animal Breeding. 2018. V. 61. № 1. P. 71–78. https://doi.org/10.5194/aab-61-71-2018
- Li Y.C., Korol A.B., Fahima T. et al. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review // Mol. Ecology. 2002. V. 11. № 12. P. 2453–2465. https://doi.org/10.1046/j.1365-294X.2002.01643.x
Supplementary files
