Calpastatin CAST and Androgen Receptor AR Gene Polymorphism Studyas Meat Quality Predictors in Reindeer Rangifer tarandus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Marker-based selection on reindeer meat productivity is in the early stages of development, which requires the study of variability in candidate genes for meat productivity. We chose the calpastatin and androgen receptor genes as such genes to study. Polymorphisms and indels in the androgen receptor gene have been associated with height and weight characteristics in different domesticated animal species. Variation in the region of the calpastatin CAST gene, according to the results of many studies, has been associated with meat quality and meat productivity of livestock. Principal component analysis of CAST variability has grouped together wild and domestic deer from Yakutia, as well as wild and domestic deer from the Amur region, which implies gene flow between local breeds of domesticated deer and wild populations. Moreover, in the case of three microsatellite loci found in this study in the intron of the androgen receptor, principal component analysis separated wild and domestic deer.

Full Text

Restricted Access

About the authors

E. A. Konorov

Vavilov Institute of General Genetics, Russian Academy of Sciences; Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences

Author for correspondence.
Email: casqy@yandex.ru
Russian Federation, Moscow, 119991; Moscow, 109316

K. A. Kurbakov

Vavilov Institute of General Genetics, Russian Academy of Sciences; Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences

Email: casqy@yandex.ru
Russian Federation, Moscow, 119991; Moscow, 109316

M. T. Semina

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: casqy@yandex.ru
Russian Federation, Moscow, 119991

Yu. A. Stolpovsky

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: casqy@yandex.ru
Russian Federation, Moscow, 119991

K. A. Layshev

Vavilov Institute of General Genetics, Russian Academy of Sciences; Center for Interdisciplinary Research of Food Security Problems

Email: casqy@yandex.ru
Russian Federation, St. Petersburg, Moscow, 119991; Pushkin, 196608

References

  1. Trakooljul N. Molecular and association analyses of the androgen receptor gene as a candidate for production and reproduction traits in pigs. Göttingen: Cuvillier Verlag, 2004. 127 р.
  2. Трухачев В.И., Криворучко А.Ю., Скрипкин В.С. и др. Новые однонуклеотидные замены (SNP) в гене андрогенного рецептора (AR) у российской породы овец Джалгинский меринос //Генетика. 2016. Т. 52. № 10. С. 1169–1175. https://doi.org/10.7868/S0016675816100131
  3. Xiong J., Yang F., Hua G. et al. Identification of genetic variants within androgen receptor gene of Sika deer and its association with antler production // J. of Animal and Veterinary Advances. 2012. V. 11. № 12. P. 2059–2063.
  4. Ramadevi B., Kumari B. P., Sudhakar K. et al. Polymorphism of the Ovine Calpastatin (CAST) gene and its association with productive traits in Nellore sheep // J. of Animal Res. 2020. V. 10. № 6. P. 881–887. https://doi.org/10.1088/1755-1315/613/1/012130
  5. Corva P., Soria L., Schor A. et al. Association of CAPN1 and CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina // Genet. Mol. Biol. 2007. V. 30. P. 1064–1069. https://doi.org/10.1590/S1415-47572007000600006
  6. Li X., Ekerljung M., Lundström K., Lundén A. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden // Meat Science. 2013. V. 94. № 2. P. 153–158. https://doi.org/10.1016/j.meatsci.2013.01.010
  7. Ropka-Molik K., Bereta A., Tyra M. et al. Association of calpastatin gene polymorphisms and meat quality traits in pig // Meat Science. 2014. V.. 97. № 2. P. 143–150. https://doi.org/10.1016/j.meatsci.2014.01.021
  8. Kholodova M.V., Baranova A.I., Mizin I.A. et al. A genetic predisposition to chronic wasting disease in the reindeer Rangifer tarandus in the Northern European part of Russia // Biology Bulletin. 2019. V. 46. P. 555–561. https://doi.org/10.1134/S1062359019060074
  9. Курбаков К.А., Коноров Е.А., Семина М.Т., Столповский Ю.А. Распространение ассоциированных с болезнью хронического изнурения аллелей гена PRNP у диких и домашних северных оленей Rangifer tarandus на территории России // Генетика. 2022. Т. 58. № 2. С. 163–168. https://doi.org/10.31857/S0016675822020102
  10. Ye J., Coulouris G., Zaretskaya I. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction // BMC Bioinformatics. 2012. V.. 13. № 1. P. 1–11. https://doi.org/10.1186/1471-2105-13-134
  11. Kluesner M.G., Nedveck D.A., Lahr W.S. et al. EditR: A method to quantify base editing from Sanger sequencing // The CRISPR J. 2018. V.. 1. № 3. P. 239–250. https://doi.org/10.1089/crispr.2018.0014
  12. Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput // Nucl. Ac. Res. 2004. V.. 32. № 5. P. 1792–1797. https://doi.org/10.1093/nar/gkh340
  13. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. № 6. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
  14. Peakall R.O.D., Smouse P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Notes. 2006. V. 6. № 1. P. 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  15. Lê S., Josse J., Husson F. FactoMineR: An R package for multivariate analysis // J. Stat. Software. 2008. V.. 25. P. 1–18. https://doi.org/10.18637/jss.v025.i01
  16. Suleman M., Khan S.U., Riaz M.N. et al. Calpastatin (CAST) gene polymorphism in Kajli, Lohi and Thalli sheep breeds // African J. Biotechnology. 2012. V. 11. № 47. P. 10655–10660. https://doi.org/10.5897/AJB11.2478
  17. Calvo J.H., Iguácel L.P., Kirinus J.K. et al. A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness // Meat Science. 2014. V.. 96. № 2. P. . 775–782. https://doi.org/10.1016/j.meatsci.2013.10.003
  18. Svishcheva G., Babayan O., Sipko T. et al. Genetic differentiation between coexisting wild and domestic Reindeer (Rangifer tarandus L. 1758) in Northern Eurasia // Genetic Res. 2022. V. 3. № 6. P.. 1–14. https://doi.org/10.46265/genresj.UYML5006
  19. Zhao H., Wu M., Wang S. et al. Identification of a novel 24 bp insertion–deletion (indel) of the androgen receptor gene and its association with growth traits in four indigenous cattle breeds // Archives Animal Breeding. 2018. V. 61. № 1. P. 71–78. https://doi.org/10.5194/aab-61-71-2018
  20. Li Y.C., Korol A.B., Fahima T. et al. Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review // Mol. Ecology. 2002. V. 11. № 12. P. 2453–2465. https://doi.org/10.1046/j.1365-294X.2002.01643.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Genotype frequencies for polymorphic sites of the CAST gene in R. tarandus individuals studied in this work.

Download (228KB)
3. Fig. 2. Results of principal component analysis based on the allele frequencies of the CAST gene for the studied reindeer samples.

Download (98KB)
4. Fig. 3. Results of principal component analysis based on allele frequencies of microsatellite loci of the androgen receptor gene AR for the studied reindeer samples.

Download (87KB)

Copyright (c) 2024 Russian Academy of Sciences